Electrically conductive transparent papers using multiwalled carbon nanotubes

被引:67
作者
Jung, Rira [1 ]
Kim, Hun-Sik [1 ]
Kim, Yeseul [1 ]
Kwon, Soon-Min [1 ]
Lee, Heon Sanc [2 ]
In, Hyoung-Joon [1 ]
机构
[1] Inha Univ, Dept Polymer Sci & Engn, Inchon 402751, South Korea
[2] LG Chem Ltd, Ctr Technol, Taejon 305343, South Korea
关键词
bacterial cellulose; biomaterials; electrical conductivity; multiwalled carbon nanotubes; nanocomposites; optics; polysaccharides; silk fibroin; transparency;
D O I
10.1002/polb.21457
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We describe a novel class of electrically conductive transparent materials based on multiwalled carbon nanotubes (MWCNTs). Transparent nanocomposites were fabricated by incorporating an aqueous silk fibroin solution into bacterial cellulose membranes. The transparent nanocomposites had a high transmittance in the visible and infrared regions, regardless of the bacterial cellulose fiber content, due to the nanosize effect of the bacterial cellulose nanofibrils. This phenomenon allowed the preparation of a novel electrically conductive transparent paper. The high dispersity of the MWCNTs was realized by utilizing a bacterial cellulose membrane as a template to deposit them uniformly, thereby achieving electrically conductive transparent papers with outstanding optical transparency. The light transmittance and electrical conductivity varied according to the concentration of the MWCNT dispersion. Good optimal transparency and electrical properties were obtained with a light transmittance of 70.3% at 550 nm and electrical conductivity of 2.1 X 10(-3) S/cm when the electrically conductive transparent paper was fabricated from a 0.02 wt % aqueous MWCNT dispersion. In addition, the electrically conductive transparent papers showed remarkable flexibility without any loss of their initial properties. (c) 2008 Wiley Periodicals, Inc.
引用
收藏
页码:1235 / 1242
页数:8
相关论文
共 25 条
[1]   Nanocomposite materials for optical applications [J].
Beecroft, LL ;
Ober, CK .
CHEMISTRY OF MATERIALS, 1997, 9 (06) :1302-1317
[2]  
Bergshoef MM, 1999, ADV MATER, V11, P1362, DOI 10.1002/(SICI)1521-4095(199911)11:16<1362::AID-ADMA1362>3.0.CO
[3]  
2-X
[4]   Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics [J].
Cao, Q ;
Hur, SH ;
Zhu, ZT ;
Sun, YG ;
Wang, CJ ;
Meitl, MA ;
Shim, M ;
Rogers, JA .
ADVANCED MATERIALS, 2006, 18 (03) :304-+
[5]   Mechanical reinforcement of polymers using carbon nanotubes [J].
Coleman, JN ;
Khan, U ;
Gun'ko, YK .
ADVANCED MATERIALS, 2006, 18 (06) :689-706
[6]   Synthesis and characterization of carbon nanotube-conducting polymer thin films [J].
Ferrer-Anglada, N ;
Kaempgen, M ;
Skákalová, V ;
Dettlaf-Weglikowska, U ;
Roth, S .
DIAMOND AND RELATED MATERIALS, 2004, 13 (02) :256-260
[7]   Carbon nanotube films for transparent and plastic electronics [J].
Gruner, G. .
JOURNAL OF MATERIALS CHEMISTRY, 2006, 16 (35) :3533-3539
[8]   Percolation in transparent and conducting carbon nanotube networks [J].
Hu, L ;
Hecht, DS ;
Grüner, G .
NANO LETTERS, 2004, 4 (12) :2513-2517
[9]   Bacterial cellulose - a masterpiece of nature's arts [J].
Iguchi, M ;
Yamanaka, S ;
Budhiono, A .
JOURNAL OF MATERIALS SCIENCE, 2000, 35 (02) :261-270
[10]   Water-stable silk films with reduced β-sheet content [J].
Jin, HJ ;
Park, J ;
Karageorgiou, V ;
Kim, UJ ;
Valluzzi, R ;
Kaplan, DL .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (08) :1241-1247