Image segmentation using genetic method to select feature indices

被引:0
作者
Matsui, K [1 ]
Kosugi, Y [1 ]
机构
[1] Shizuoka Univ, Dept Elect & Elect Engn, Hamamatsu, Shizuoka 4328561, Japan
来源
ICONIP'98: THE FIFTH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING JOINTLY WITH JNNS'98: THE 1998 ANNUAL CONFERENCE OF THE JAPANESE NEURAL NETWORK SOCIETY - PROCEEDINGS, VOLS 1-3 | 1998年
关键词
genetic algorithm; CCE; feature selection; image segmentation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new method to select the optimal feature indices based on a genetic algorithm (GA) for the problem of image segmentation. For improving the performance of image segmentation using neural-net classifier, it is important to select the effective combination of feature indices, among many candidates, to be used for the classification. In our genetic method, we use a new criterion, VQCCE, to evaluate the combination of feature indices rapidly without testing on the actual classifiers. We applied our method to problems of texture classification and brain MRI segmentation.
引用
收藏
页码:352 / 355
页数:4
相关论文
共 6 条
[1]   MINIMUM CLASS ENTROPY - A MAXIMUM INFORMATION APPROACH TO LAYERED NETWORKS [J].
BICHSEL, M ;
SEITZ, P .
NEURAL NETWORKS, 1989, 2 (02) :133-141
[2]  
Brodatz P, 1966, TEXTURES PHOTOGRAPHI
[3]  
GOLDBERG DE, 1989, GENETIC ALGORITHM SE
[4]  
Kosugi Y, 1996, INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL II, P249, DOI 10.1109/ICIP.1996.560762
[5]   ALGORITHM FOR VECTOR QUANTIZER DESIGN [J].
LINDE, Y ;
BUZO, A ;
GRAY, RM .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1980, 28 (01) :84-95
[6]  
SUGANAMI Y, 1996, P IEICE C D, V112