Joint image deblurring and matching with feature-based sparse representation prior

被引:15
作者
Peng, Juncai [1 ]
Shao, Yuanjie [1 ]
Sang, Nong [1 ]
Gao, Changxin [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Natl Key Lab Sci & Technol Multispectral Informat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Blurred image matching; Joint image deblurring and matching; Sparse representation priorsparse; (2D)(2)PCA feature; FACE RECOGNITION; REGISTRATION; ALGORITHMS;
D O I
10.1016/j.patcog.2020.107300
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image matching aims to find a similar area of the small image in the large image, which is one of the key steps in image fusion and vision-based navigation; however, most matching methods perform poorly when the images to be matched are blurred. Traditional approaches for blurred image matching usually follow a two-stage framework - first resorting to image deblurring and then performing image matching with the recovered image. However, the matching accuracy of these methods often suffers greatly from the deficiency of image deblurring. Recently, a joint image deblurring and matching method that utilizes the sparse representation prior to exploit the correlation between deblurring and matching was proposed to address this problem and found to obtain a higher matching accuracy. Yet, that technique is not efficient when the image is seriously blurred, and the method's time complexity is excessive. In this paper, we propose a joint image deblurring and matching approach with a feature-based sparse representation prior. Our approach utilizes two-directional two-dimensional (2D)(2) PCA to extract feature vectors from images and obtains a sparse representation prior in a robust feature space rather than the original pixel space, thus mitigating the influence of image blur. Moreover, the reduction in the feature dimension can also increase the computational efficiency. Extensive experiments show that our approach significantly outperforms state-of-the-art approaches in terms of both accuracy and speed. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 37 条
[1]   SURF: Speeded up robust features [J].
Bay, Herbert ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION - ECCV 2006 , PT 1, PROCEEDINGS, 2006, 3951 :404-417
[2]   A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration [J].
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (12) :2992-3004
[3]   Template matching using fast normalized cross correlation [J].
Briechle, K ;
Hanebeck, UD .
OPTICAL PATTERN RECOGNITION XII, 2001, 4387 :95-102
[4]   Similarity measures for image matching despite occlusions in stereo vision [J].
Chambon, Sylvie ;
Crouzil, Alain .
PATTERN RECOGNITION, 2011, 44 (09) :2063-2075
[5]   Fast Motion Deblurring [J].
Cho, Sunghyun ;
Lee, Seungyong .
ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (05) :1-8
[6]   In Defense of Sparsity Based Face Recognition [J].
Deng, Weihong ;
Hu, Jiani ;
Guo, Jun .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :399-406
[7]   Extended SRC: Undersampled Face Recognition via Intraclass Variant Dictionary [J].
Deng, Weihong ;
Hu, Jiani ;
Guo, Jun .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (09) :1864-1870
[8]  
Dong WS, 2011, IEEE I CONF COMP VIS, P1259, DOI 10.1109/ICCV.2011.6126377
[9]   For most large underdetermined systems of equations, the minimal l1-norm near-solution approximates the sparsest near-solution [J].
Donoho, David L. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (07) :907-934
[10]  
Gonzalez R.C., 1977, DIGITAL IMAGE PROCES