Neural nets can be universal approximators for fuzzy functions

被引:0
作者
Buckley, JJ
Hayashi, Y
机构
来源
1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4 | 1997年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We first argue that the extension principle is too computationly involved to be an efficient way for a computer to evaluate fuzzy functions. We then suggest using alpha-cuts and interval arithmetic to compute the values of fuzzy functions. Using this method of computing fuzzy functions, we then show that neural nets are universal approximators for (computable) fuzzy functions, when we only input non-negative, or non-positive, fuzzy numbers.
引用
收藏
页码:2347 / 2350
页数:4
相关论文
empty
未找到相关数据