Synthesis and photocatalytic property of N-doped TiO2 nanorods and nanotubes with high nitrogen content

被引:22
作者
He, Z. [1 ]
He, H. Y. [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Minist Educ, Key Lab Auxiliary Chem & Technol Chem Ind, Xian 710021, Peoples R China
关键词
N-doped TiO2; Nano-rods; Nano-tubes; Solvothermal process; Light absorption; Photocatalysis; CHARGE-TRANSFER PROCESSES; PHOTOELECTROCHEMICAL BEHAVIOR; TITANIUM-DIOXIDE; LIGHT-INTENSITY; PARTICULATE SYSTEMS; DEGRADATION; ARRAYS; FILMS; FABRICATION; MECHANISM;
D O I
10.1016/j.apsusc.2011.09.051
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nano N-doped TiO2 nanotubes were fabricated by hydrothermally treating N-doped TiO2 nanorods in a 8 M NaOH solution at 110 degrees C for 20 h. The N-doped TiO2 nanorods were synthesized by a solvothermal process with precursor solution containing titanium sulfate, urea, and dichloroethane. The N-doped TiO2 nanorods and nanotubes were characterized with X-ray diffraction, transmission electron microscopy, and UV-vis spectrophotometry. The nitrogen contents of the N-doped TiO2 nanorods and nanotubes were reached to high values of 36.9 at.% and 25.7 at.%, respectively. The nitrogen doping narrowed the band gap of the N-doped TiO2 nanorods and nanotubes and introduced indirect band gap to the powders, which respectively extended the absorption edge to visible light and infrared region. The nanotubes showed larger specific surface area and greater degradation efficiency to methyl orange than the nanorods. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:972 / 976
页数:5
相关论文
共 51 条
[1]   Formation of titania nanotubes with high photo-catalytic activity [J].
Adachi, M ;
Murata, Y ;
Harada, M ;
Yoshikawa, S .
CHEMISTRY LETTERS, 2000, (08) :942-943
[2]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[3]   CAPPED SEMICONDUCTOR COLLOIDS - SYNTHESIS AND PHOTOELECTROCHEMICAL BEHAVIOR OF TIO2-CAPPED SNO2 NANOCRYSTALLITES [J].
BEDJA, I ;
KAMAT, PV .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (22) :9182-9188
[4]   The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation [J].
Cai, QY ;
Paulose, M ;
Varghese, OK ;
Grimes, CA .
JOURNAL OF MATERIALS RESEARCH, 2005, 20 (01) :230-236
[5]  
Chen Q, 2002, ADV MATER, V14, P1208, DOI 10.1002/1521-4095(20020903)14:17<1208::AID-ADMA1208>3.0.CO
[6]  
2-0
[7]   THE ROLE OF METAL-ION DOPANTS IN QUANTUM-SIZED TIO2 - CORRELATION BETWEEN PHOTOREACTIVITY AND CHARGE-CARRIER RECOMBINATION DYNAMICS [J].
CHOI, WY ;
TERMIN, A ;
HOFFMANN, MR .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (51) :13669-13679
[8]   Highly porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 composite nanostructures on glass with enhanced photocatalysis fabricated by anodization and sol-gel process [J].
Chu, SZ ;
Inoue, S ;
Wada, K ;
Li, D ;
Haneda, H ;
Awatsu, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (27) :6586-6589
[9]   Boosting fuel cell performance with a semiconductor photocatalyst:: TiO2/Pt-Ru hybrid catalyst for methanol oxidation [J].
Drew, K ;
Girishkumar, G ;
Vinodgopal, K ;
Kamat, PV .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (24) :11851-11857
[10]   PHOTOELECTROCHEMISTRY IN SEMICONDUCTOR PARTICULATE SYSTEMS .16. PHOTOPHYSICAL AND PHOTOCHEMICAL ASPECTS OF COUPLED SEMICONDUCTORS - CHARGE-TRANSFER PROCESSES IN COLLOIDAL CDS-TIO2 AND CDS-AGI SYSTEMS [J].
GOPIDAS, KR ;
BOHORQUEZ, M ;
KAMAT, PV .
JOURNAL OF PHYSICAL CHEMISTRY, 1990, 94 (16) :6435-6440