On symmetry of Birkhoff orthogonality in the positive cones of C*-algebras with applications

被引:8
作者
Komuro, Naoto [1 ]
Saito, Kichi-Suke [2 ]
Tanaka, Ryotaro [3 ]
机构
[1] Hokkaido Univ, Dept Math, Asahikawa Campus, Asahikawa, Hokkaido 0708621, Japan
[2] Niigata Univ, Inst Sci & Technol, Dept Math Sci, Niigata 9502181, Japan
[3] Tokyo Univ Sci, Fac Ind Sci & Technol, Oshamambe, Hokkaido 0493514, Japan
基金
日本学术振兴会;
关键词
C*-algebra; Birkhoff orthogonality; Symmetric point; Positive cone; Preserver; JAMES ORTHOGONALITY; OPERATORS; POINTS;
D O I
10.1016/j.jmaa.2019.02.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, local symmetry of Birkhoff orthogonality is considered in the positive cones of C*-algebras. For the positive cone U+ of a C*-algebra U, the notion of U+-local left (or right) symmetric points for Birkhoff orthogonality is introduced. Some simple characterizations of them are given. As an application, we determine the form of Birkhoff orthogonality preservers between the positive cones of C*-algebras by using Jordan *-isomorphisms. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1488 / 1497
页数:10
相关论文
共 22 条
  • [1] On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces
    Alonso, Javier
    Martini, Horst
    Wu, Senlin
    [J]. AEQUATIONES MATHEMATICAE, 2012, 83 (1-2) : 153 - 189
  • [2] [Anonymous], PURE APPL MATH
  • [3] [Anonymous], 2006, ENCYCL MATH SCI
  • [4] ON SYMMETRY OF THE (STRONG) BIRKHOFF-JAMES ORTHOGONALITY IN HILBERT C*-MODULES
    Arambasic, Ljiljana
    Rajic, Rajna
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (01): : 17 - 23
  • [5] Operators preserving the strong Birkhoff-James orthogonality on B(H)
    Arambasic, Ljiljana
    Rajic, Rajna
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 471 : 394 - 404
  • [6] Orthogonality of matrices and some distance problems
    Bhatia, R
    Semrl, P
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 287 (1-3) : 77 - 85
  • [7] Birkhoff G., 1935, Duke Math. J., V1, P169, DOI [10.1215/S0012-7094-35-00115-6. h17i, DOI 10.1215/S0012-7094-35-00115-6.H17I]
  • [8] On maps that preserve orthogonality in normed spaces
    Blanco, A.
    Turnsek, A.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 : 709 - 716
  • [9] Approximate symmetry of Birkhoff orthogonality
    Chmielinski, Jacek
    Wojcik, Pawel
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (01) : 625 - 640
  • [10] Conway JB., 1990, COURSE FUNCTIONAL AN