On Toda lattices and orthogonal polynomials

被引:26
作者
Peherstorfer, F [1 ]
机构
[1] Johannes Kepler Univ Linz, Inst Anal & Numer, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
polynomials orthogonal on several intervals; Pade-approximants of square-root functions; periodic recurrence coefficients; periodic lattices; elliptic functions;
D O I
10.1016/S0377-0427(00)00673-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
First, we derive a simple connection between Toda and Langmuir lattices and give a characterization of Toda lattices with the help of Stieltjes functions, Then it is shown how to generate by orthogonal polynomials in an elementary way periodic and almost periodic Toda lattices. The particles of the Toda lattice are not even restricted, as usual, to move on the real line, they may also move in the complex plane. With the help of this result, for special cases explicit solutions are obtained in terms of elliptic functions. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:519 / 534
页数:16
相关论文
共 32 条
[1]   Toda-Darboux maps and vertex operators [J].
Adler, M ;
van Moerbeke, P .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1998, 1998 (10) :489-511
[2]  
APTEKAREV AI, 1986, FUNCTION THEORY APPR, V2, P17
[3]  
APTEKAREV AI, 1986, MATH USSR SB, V53, P233, DOI DOI 10.1070/SM1986v053n01ABEH002918
[4]  
CHIHARA TS, 1964, B UNIONE MAT ITAL, V19, P451
[5]   TODA LATTICE .2. EXISTENCE OF INTEGRALS [J].
FLASCHKA, H .
PHYSICAL REVIEW B, 1974, 9 (04) :1924-1925
[6]   TODA LATTICE .2. INVERSE-SCATTERING SOLUTION [J].
FLASCHKA, H .
PROGRESS OF THEORETICAL PHYSICS, 1974, 51 (03) :703-716
[7]  
FLASCHKA H, 1975, LECT NOTES PHYSICS
[8]   INTEGRABILITY OF TODA LATTICE [J].
FORD, J ;
STODDARD, SD ;
TURNER, JS .
PROGRESS OF THEORETICAL PHYSICS, 1973, 50 (05) :1547-1560
[9]   ORTHOGONAL POLYNOMIALS WITH ASYMPTOTICALLY PERIODIC RECURRENCE COEFFICIENTS [J].
GERONIMO, JS ;
VANASSCHE, W .
JOURNAL OF APPROXIMATION THEORY, 1986, 46 (03) :251-283
[10]  
GERONIMUS YL, 1975, MEM MATH SECT FAC PH, V25, P81