Interface engineering of the Ni(OH)2-Ni3N nanoarray heterostructure for the alkaline hydrogen evolution reaction

被引:106
作者
Gao, Min [1 ]
Chen, Lanlan [1 ]
Zhang, Zhenhua [1 ]
Sun, Xuping [2 ]
Zhang, Shusheng [1 ]
机构
[1] Linyi Univ, Sch Chem & Chem Engn, Shandong Prov Key Lab Detect Technol Tumor Marker, Linyi 276006, Shandong, Peoples R China
[2] Sichuan Univ, Coll Chem, Chengdu 610064, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
NICKEL NITRIDE; ROBUST ELECTROCATALYST; NANOSHEETS ARRAY; NANOWIRE ARRAYS; WATER; CATHODE; PERFORMANCE; CATALYSTS; PHOSPHIDE; CARBON;
D O I
10.1039/c7ta08907d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is highly attractive but challenging to design and develop noble-metal-free catalysts with outstanding electrocatalytic activity for the hydrogen evolution reaction (HER) in alkaline media. In this work, we demonstrate the development of Ni(OH)(2)-Ni3N nanoarrays on Ti mesh (Ni(OH)(2)-Ni3N/TM) as a three-dimensional (3D) HER catalyst in alkaline solutions. Due to the heterostructure from interface engineering, Ni(OH)(2)-Ni3N/TM shows excellent alkaline HER activity only requiring an overpotential of 72 mV to deliver the current density of 20 mA cm(-2) in 1.0 M KOH. Such an electrocatalyst also exhibits long-term electrochemical durability maintaining its activity for at least 25 h.
引用
收藏
页码:833 / 836
页数:4
相关论文
共 38 条
[1]   Mechanistic insight into oxygen evolution electrocatalysis of surface phosphate modified cobalt phosphide nanorod bundles and their superior performance for overall water splitting [J].
Ai, Lunhong ;
Niu, Zhiguo ;
Jiang, Jing .
ELECTROCHIMICA ACTA, 2017, 242 :355-363
[2]   Ultrathin Graphene Layers Encapsulating Nickel Nanoparticles Derived Metal-Organic Frameworks for Highly Efficient Electrocatalytic Hydrogen and Oxygen Evolution Reactions [J].
Ai, Lunhong ;
Tian, Tian ;
Jiang, Jing .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (06) :4771-4777
[3]   The hydrogen economy [J].
Crabtree, GW ;
Dresselhaus, MS ;
Buchanan, MV .
PHYSICS TODAY, 2004, 57 (12) :39-44
[4]   Enhancing the Alkaline Hydrogen Evolution Reaction Activity through the Bifunctionality of Ni(OH)2/Metal Catalysts [J].
Danilovic, N. ;
Subbaraman, Ram ;
Strmcnik, D. ;
Chang, Kee-Chul ;
Paulikas, A. P. ;
Stamenkovic, V. R. ;
Markovic, Nenad M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (50) :12495-12498
[5]   Alternative energy technologies [J].
Dresselhaus, MS ;
Thomas, IL .
NATURE, 2001, 414 (6861) :332-337
[6]   Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications [J].
Faber, Matthew S. ;
Jin, Song .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (11) :3519-3542
[7]   Computational high-throughput screening of electrocatalytic materials for hydrogen evolution [J].
Greeley, Jeff ;
Jaramillo, Thomas F. ;
Bonde, Jacob ;
Chorkendorff, I. B. ;
Norskov, Jens K. .
NATURE MATERIALS, 2006, 5 (11) :909-913
[8]   The interaction of water with solid surfaces: fundamental aspects revisited [J].
Henderson, MA .
SURFACE SCIENCE REPORTS, 2002, 46 (1-8) :1-308
[9]   Cobalt/molybdenum carbide@N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions [J].
Jiang, Jing ;
Liu, Qiuxia ;
Zeng, Chunmei ;
Ai, Lunhong .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (32) :16929-16935
[10]   A porous Ni3N nanosheet array as a high-performance non-noble-metal catalyst for urea-assisted electrochemical hydrogen production [J].
Liu, Qin ;
Xie, Lisi ;
Qu, Fengli ;
Liu, Zhiang ;
Du, Gu ;
Asiri, Abdullah M. ;
Sun, Xuping .
INORGANIC CHEMISTRY FRONTIERS, 2017, 4 (07) :1120-1124