Stability of the Poiseuille-type flow for a MHD model of an incompressible polymeric fluid

被引:8
|
作者
Blokhin, A. M. [1 ,2 ]
Tkachev, D. L. [1 ,2 ]
机构
[1] Sobolev Inst Math, 4 Acad Koptuyg Ave, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Mech & Math Dept, 1 Pirogova Str, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Incompressible viscoelastic polymeric fluid; Rheological relation; Magnetohydrodynamic flow; MICROPOLAR FLUID; LINEARIZED PROBLEM; ASYMPTOTICS; INSTABILITY; SPECTRUM;
D O I
10.1016/j.euromechflu.2019.12.006
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study a generalization of the Pokrovski-Vinogradov model for flows of solutions and melts of an incompressible viscoelastic polymeric medium to nonisothermal flows in an infinite plane channel under the influence of magnetic field. For the linearized problem (when the basic solution is an analogue of the classical Poiseuille flow for a viscous fluid described by the Navier-Stokes equations) we find a formal asymptotic representation for the eigenvalues under the growth of their modulus. We obtain a necessary condition for the asymptotic stability of the Poiseuille-type shear flow. For analysis we use new result, that generalizes Birkhoff theorem on the case, when the coefficient matrix of the eigenvalue itself has zero with multiplicity greater than one as an eigenvalue. We also get the necessary condition for Lyapunov stability of the shear Poiseuille-type flow as a result of acquired representation. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:112 / 121
页数:10
相关论文
共 50 条
  • [1] Stability of Poiseuille-type flows in an MHD model of an incompressible polymeric fluid
    Blokhin, A. M.
    Tkachev, D. L.
    SBORNIK MATHEMATICS, 2020, 211 (07) : 901 - 921
  • [2] Stability of Poiseuille-type Flows for an MHD Model of an Incompressible Polymeric Fluid
    Blokhin, A. M.
    Tkachev, D. L.
    FLUID DYNAMICS, 2019, 54 (08) : 1051 - 1058
  • [3] Stability of Poiseuille-type flows for an MHD model of an incompressible polymeric fluid
    Blokhin, A. M.
    Tkachev, D. L.
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2019, 16 (04) : 793 - 817
  • [4] Stability of Poiseuille-type Flows for an MHD Model of an Incompressible Polymeric Fluid
    A. M. Blokhin
    D. L. Tkachev
    Fluid Dynamics, 2019, 54 : 1051 - 1058
  • [5] Stability of a Two-Dimensional Poiseuille-Type Flow for a Viscoelastic Fluid
    Endo, Masakazu
    Giga, Yoshikazu
    Goetz, Dario
    Liu, Chun
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2017, 19 (01) : 17 - 45
  • [6] Stability of a Two-Dimensional Poiseuille-Type Flow for a Viscoelastic Fluid
    Masakazu Endo
    Yoshikazu Giga
    Dario Götz
    Chun Liu
    Journal of Mathematical Fluid Mechanics, 2017, 19 : 17 - 45
  • [7] A NOTE ON POISEUILLE-TYPE FLOW OF A CASSON FLUID
    DEAKIN, MAB
    BULLETIN OF MATHEMATICAL BIOPHYSICS, 1969, 31 (01): : 71 - &
  • [8] Stabilization of the flat Poiseuille-type flow for viscoelastic polymeric liquid
    Semenko, Roman
    PHYSICS OF FLUIDS, 2023, 35 (03)
  • [9] Finding Steady Poiseuille-Type Flows for Incompressible Polymeric Fluids by the Relaxation Method
    Blokhin, A. M.
    Semisalov, B., V
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2022, 62 (02) : 302 - 315
  • [10] Finding Steady Poiseuille-Type Flows for Incompressible Polymeric Fluids by the Relaxation Method
    A. M. Blokhin
    B. V. Semisalov
    Computational Mathematics and Mathematical Physics, 2022, 62 : 302 - 315