The Samarskii-lonkin type problem for the fourth order parabolic equation with fractional differential operator

被引:20
作者
Berdyshev, A. S. [1 ]
Cabada, A. [2 ]
Kadirkulov, B. J. [3 ]
机构
[1] Kazakh Natl Pedag Univ Abai, Alma Ata, Kazakhstan
[2] Univ Santiago de Compostela, Santiago De Compostela, Spain
[3] Inst Oriental Studies, Tashkent, Uzbekistan
关键词
Integro-differential operator; Fractional derivative; Samarskii-lonkin type problem; Eigenvalues and eigenfunctions; Riesz basis; Bi-orthonormal system; DIFFUSION-WAVE EQUATION;
D O I
10.1016/j.camwa.2011.09.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present work the Samarskii-lonkin type non-local problem with Caputo fractional order differential operator is studied. The considered problem generalizes some previous known problems formulated for some fourth order parabolic equations. We prove the existence and uniqueness of a regular solution of the formulated problem applying the method of separation of variables. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3884 / 3893
页数:10
相关论文
共 20 条
[1]   A general solution for a fourth-order fractional diffusion-wave equation defined in a bounded domain [J].
Agrawal, OP .
COMPUTERS & STRUCTURES, 2001, 79 (16) :1497-1501
[2]   Existence Results for Nonlinear Boundary Value Problems of Fractional Integrodifferential Equations with Integral Boundary Conditions [J].
Ahmad, Bashir ;
Nieto, Juan J. .
BOUNDARY VALUE PROBLEMS, 2009,
[3]  
Amanov D., 2007, INT C DIFF EQ THEOR, P61
[4]  
Bari N.K., 1951, BIORTHOGONAL SYSTEMS, V148, P69
[5]  
Berdyshev A.S., 2002, P INT SCI C DIFF EQ, P17
[6]  
Berdyshev A.S., 2008, P INT C ZHET KAZ, P32
[7]  
Dzhrbashian M.M., 1966, INTEGRAL TRANSFORMAT, P672
[8]  
Dzhuraev T.D., 2000, THEORY DIFFERENTIAL, P144
[9]  
Gohberg I., 1978, INTRO THEORY LINEAR, V18
[10]  
Gorenflo R., 2000, Fract Calc Appl Anal, V3, P249