Enhanced Weighted Round Robin (EWRR) Scheduling with DVFS Technology in Cloud

被引:10
作者
Alnowiser, Abdulaziz [1 ]
Aldhahri, Eman [1 ]
Alahmadi, Abdulrahman [1 ]
机构
[1] So Illinois Univ, Dept Comp Sci, Carbondale, IL 62901 USA
来源
2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), VOL 1 | 2014年
关键词
Cloud Computing; VM scheduling; DVFS; Weighted Round Robin; ALLOCATION;
D O I
10.1109/CSCI.2014.62
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, the rapid evolving Cloud Computing technologies multiply challenges including minimum power consumption and Quality-of-Services (QoS) requirements in the presence of heavy workloads from a large number of users. Powering a middle-sized data center normally consumes 80,000kW power every year. In order to address the skyrocketed energy cost from the resource management aspect, we proposed an energy efficient job scheduling approach based on a modified Weighted Round Robin scheduler that incorporates VMs reuse and live VM migration without compromising the Service Level Agreement (SLA). Enhanced Weighted Round Robin (EWRR) algorithm enhanced scheduler monitors and evaluates the running VMs status for possible task consolidation or VM Migration. In addition, VM Manager observes the VMs utilization rate to start live migration from the over-utilized Processing Element (PE) to under-utilized PEs or to the hibernated PEs by sending WOL (Wake-On-LAN) signal to guarantee performance. Moreover, we integrated a Dynamic Voltage and Frequency Scaling (DVFS) algorithm to specify the minimum VM frequency for each task depending on the task complexity and the execution deadline.
引用
收藏
页码:320 / 326
页数:7
相关论文
共 26 条
[1]  
Adamec B., 2012, J ELECT COMPUTER ENG, V2012, P17
[2]   Energy-Efficient Algorithms [J].
Albers, Susanne .
COMMUNICATIONS OF THE ACM, 2010, 53 (05) :86-96
[3]   Suspending, migrating and resuming HPC virtual clusters [J].
Anedda, Paolo ;
Leo, Simone ;
Manca, Simone ;
Gaggero, Massimo ;
Zanetti, Gianluigi .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2010, 26 (08) :1063-1072
[4]  
[Anonymous], P 19 INT S PAR DISTR
[5]  
[Anonymous], P 2 C S NETW SYST DE
[6]   Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing [J].
Beloglazov, Anton ;
Abawajy, Jemal ;
Buyya, Rajkumar .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2012, 28 (05) :755-768
[7]   Energy-Efficient Cloud Computing [J].
Berl, Andreas ;
Gelenbe, Erol ;
Di Girolamo, Marco ;
Giuliani, Giovanni ;
De Meer, Hermann ;
Dang, Minh Quan ;
Pentikousis, Kostas .
COMPUTER JOURNAL, 2010, 53 (07) :1045-1051
[8]  
Berral JosepLl., 2010, e-Energy'10. (Passau, P215, DOI 10.1145/1791314.1791349
[9]  
Chen Y., 2005, Performance Evaluation Review, V33, P303, DOI 10.1145/1071690.1064253
[10]  
Daryl D. M. S., 2008, CLOUD COMPUTING CONF