Adaptive fuzzy impulsive synchronization of chaotic systems with random parameters

被引:20
作者
Zhang, Xingpeng [1 ]
Li, Dong [2 ]
Zhang, Xiaohong [1 ,3 ]
机构
[1] Chongqing Univ, Sch Software Engn, Chongqing 400030, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 400030, Peoples R China
[3] Minist Educ, Key Lab Dependable Serv Comp, Cyber Phys Soc, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Synchronization; Random parameters; Fuzzy impulsive control; Adaptive control; Lyapunov function; SLIDING MODE CONTROL; DELAYED NEURAL-NETWORKS; UNKNOWN-PARAMETERS; EXPONENTIAL SYNCHRONIZATION; FEEDBACK-CONTROL; UNCERTAINTIES; NONLINEARITIES; DISCRETE;
D O I
10.1016/j.chaos.2017.08.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Randomness is a common phenomenon in nonlinear systems. And conditions to reach synchronization are more complex and difficult when chaotic systems have random parameters. So in this paper, an adaptive scheme for synchronization of chaotic system with random parameters by using the fuzzy impulsive method and combining the properties of Wiener process and Ito differential is investigated. The main concepts of this paper are applying fuzzy method to approximate the nonlinear part of system, then using Ito differential to study the Wiener process of random parameters of chaotic system, and realizing synchronization under fuzzy impulsive method. The stability is analyzed by Lyapunov stability theorem. At the end of the paper, numerical simulation is presented to illustrate the effectiveness of the results obtained in this paper. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:77 / 83
页数:7
相关论文
共 40 条
  • [1] Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities
    Aghababa, Mohammad Pourmahmood
    Heydari, Aiuob
    [J]. APPLIED MATHEMATICAL MODELLING, 2012, 36 (04) : 1639 - 1652
  • [2] Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique
    Aghababa, Mohammad Pourmahmood
    Khanmohammadi, Sohrab
    Alizadeh, Ghassem
    [J]. APPLIED MATHEMATICAL MODELLING, 2011, 35 (06) : 3080 - 3091
  • [3] Synchronization of solutions of Duffing-type equations with random perturbations
    Ambrazevicius, A.
    Ivanauskas, F.
    Mackevicius, V.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 93 : 122 - 131
  • [4] Robust stability analysis for discrete-time neural networks with time-varying leakage delays and random parameter uncertainties
    Banu, L. Jarina
    Balasubramaniam, P.
    [J]. NEUROCOMPUTING, 2016, 179 : 126 - 134
  • [5] Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control
    Chen, Diyi
    Zhang, Runfan
    Sprott, Julien Clinton
    Ma, Xiaoyi
    [J]. NONLINEAR DYNAMICS, 2012, 70 (02) : 1549 - 1561
  • [6] Sliding mode control and synchronization of chaotic systems with parametric uncertainties
    Feki, Moez
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 41 (03) : 1390 - 1400
  • [7] Adaptive-impulsive synchronization and parameters estimation of chaotic systems with unknown parameters by using discontinuous drive signals
    Gao, Xiaojing
    Hu, Hanping
    [J]. APPLIED MATHEMATICAL MODELLING, 2015, 39 (14) : 3980 - 3989
  • [8] Design of adaptive sliding mode control for synchronization Genesio-Tesi chaotic system
    Ghamati, Mina
    Balochian, Saeed
    [J]. CHAOS SOLITONS & FRACTALS, 2015, 75 : 111 - 117
  • [9] Synchronization of chaotic systems with unknown parameters using adaptive passivity-based control
    Kuntanapreeda, Suwat
    Sangpet, Teerawat
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (08): : 2547 - 2569
  • [10] Impulsive control of stochastic systems with applications in chaos control, chaos synchronization, and neural networks
    Li, Chunguang
    Chen, Luonan
    Aihara, Kazuyuki
    [J]. CHAOS, 2008, 18 (02)