Skolem-Mahler-Lech type theorems and Picard-Vessiot theory

被引:2
作者
Wibmer, Michael [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math Algebra, D-52056 Aachen, Germany
关键词
Linear difference equations; Picard-Vessiot theory; Skolem-Mahler-Lech theorem; dynamical Mordell-Lang conjecture;
D O I
10.4171/JEMS/509
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that three problems involving linear difference equations with rational function coefficients are essentially equivalent. The first problem is the generalization of the classical Skolem-Mahler-Lech theorem to rational function coefficients. The second problem is whether or not for a given linear difference equation there exists a Picard-Vessiot extension inside the ring of sequences. The third problem is a certain special case of the dynamical Mordell-Lang conjecture. This allows us to deduce solutions to the first two problems in a particular but fairly general special case.
引用
收藏
页码:523 / 533
页数:11
相关论文
共 12 条
  • [1] On the zeros of linear recurrence sequences
    Amoroso, Francesco
    Viada, Evelina
    [J]. ACTA ARITHMETICA, 2011, 147 (04) : 387 - 396
  • [2] [Anonymous], 1997, LECT NOTES MATH
  • [3] Bell JP, 2010, AM J MATH, V132, P1655
  • [4] On the set of zero coefficients of a function satisfying a linear differential equation
    Bell, Jason P.
    Burris, Stanley N.
    Yeats, Karen
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2012, 153 : 235 - 247
  • [5] A generalised Skolem-Mahler-Lech theorem for affine varieties
    Bell, Jason R.
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 73 : 367 - 379
  • [6] Chatzidakis Z., 2008, LONDON MATH SOC LECT, V1, P73
  • [7] Cohn R., 1965, DIFFERENCE ALGEBRA
  • [8] Linear equations in variables which lie in a multiplicative group
    Evertse, JH
    Schlickewei, HP
    Schmidt, WM
    [J]. ANNALS OF MATHEMATICS, 2002, 155 (03) : 807 - 836
  • [9] Periodic points, linearizing maps, and the dynamical Mordell-Lang problem
    Ghioca, D.
    Tucker, T. J.
    [J]. JOURNAL OF NUMBER THEORY, 2009, 129 (06) : 1392 - 1403
  • [10] Levin A., 2008, DIFFERENCE ALGEBRA A, V8