Multielectron Organic Redoxmers for Energy-Dense Redox Flow Batteries

被引:35
作者
Fang, Xiaoting [1 ,2 ,3 ]
Li, Zhiguang [1 ,2 ,3 ,4 ]
Zhao, Yuyue [1 ]
Yue, Diqing [1 ,2 ]
Zhang, Lu [3 ,4 ]
Wei, Xiaoliang [1 ]
机构
[1] Indiana Univ Purdue Univ, Indianapolis, IN 46202 USA
[2] Purdue Univ, W Lafayette, IN 47907 USA
[3] Argonne Natl Lab, Lemont, IL 60439 USA
[4] Argonne Natl Lab, Joint Ctr Energy Storage Res, Lemont, IL 60439 USA
来源
ACS MATERIALS LETTERS | 2022年 / 4卷 / 02期
基金
美国国家科学基金会;
关键词
PHENAZINE-BASED ANOLYTE; TARGETING REACTIONS; NEGATIVE CHARGE; RECENT PROGRESS; LONG-LIFETIME; ELECTROLYTES; CAPACITY; STORAGE; STABILITY; CATHOLYTE;
D O I
10.1021/acsmaterialslett.1c00668
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Redox flow battery is a highly promising stationary energy storage method, but the limited energy density and high chemical cost are among the main barriers for commercialization. Multielectron organic redoxmers represent a family of structurally tailorable candidates that can achieve multiplied energy density with decreased materials consumption, potentially resulting in a viable solution to address these challenges. Here, the recent development of organic molecules with reversible multiredox activities in both aqueous and nonaqueous electrolytes is reviewed. The major focus is on the fundamental correlation between the chemical structures and the functional properties of reported multielectron organic molecules. Valuable insights are offered on rational structural design strategies for improving the relevant physicochemical and electrochemical properties. Finally, the current challenges are discussed to suggest future research needs along the avenue of using the multielectron approach to achieve energy-dense, stable, cost-effective redox flow batteries.
引用
收藏
页码:277 / 306
页数:30
相关论文
共 162 条
[1]  
[Anonymous], 2020, NRELTP540078461 US
[2]   Application of the dianion croconate violet for symmetric organic non-aqueous redox flow battery electrolytes [J].
Armstrong, Craig G. ;
Hogue, Ross W. ;
Toghill, Kathryn E. .
JOURNAL OF POWER SOURCES, 2019, 440
[3]   Proton-coupled electron transfer of flavodoxin immobilized on nanostructured tin dioxide electrodes: Thermodynamics versus kinetics control of protein redox function [J].
Astuti, Y ;
Topoglidis, E ;
Briscoe, PB ;
Fantuzzi, A ;
Gilardi, G ;
Durrant, JR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (25) :8001-8009
[4]   Tailoring Two-Electron-Donating Phenothiazines To Enable High Concentration Redox Electrolytes for Use in Nonaqueous Redox Flow Batteries [J].
Attanayake, N. Harsha ;
Kowalski, Jeffrey A. ;
Greco, Katharine V. ;
Casselman, Matthew D. ;
Milshtein, Jarrod D. ;
Chapman, Steven J. ;
Parkin, Sean R. ;
Brushett, Fikile R. ;
Odom, Susan A. .
CHEMISTRY OF MATERIALS, 2019, 31 (12) :4353-4363
[5]   A Neutral pH Aqueous Organic-Organometallic Redox Flow Battery with Extremely High Capacity Retention [J].
Beh, Eugene S. ;
De Porcellinis, Diana ;
Gracia, Rebecca L. ;
Xia, Kay T. ;
Gordon, Roy G. ;
Aziz, Michael J. .
ACS ENERGY LETTERS, 2017, 2 (03) :639-644
[6]   ELECTROCHEMISTRY OF THE VIOLOGENS [J].
BIRD, CL ;
KUHN, AT .
CHEMICAL SOCIETY REVIEWS, 1981, 10 (01) :49-82
[7]   On Lifetime and Cost of Redox-Active Organics for Aqueous Flow Batteries [J].
Brushett, Fikile R. ;
Aziz, Michael J. ;
Rodby, Kara E. .
ACS ENERGY LETTERS, 2020, 5 (03) :879-884
[8]   An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery [J].
Brushett, Fikile R. ;
Vaughey, John T. ;
Jansen, Andrew N. .
ADVANCED ENERGY MATERIALS, 2012, 2 (11) :1390-1396
[9]   BF3-promoted electrochemical properties of quinoxaline in propylene carbonate [J].
Carino, Emily V. ;
Diesendruck, Charles E. ;
Moore, Jeffrey S. ;
Curtiss, Larry A. ;
Assary, Rajeev S. ;
Brushett, Fikile R. .
RSC ADVANCES, 2015, 5 (24) :18822-18831
[10]   Concentration-Dependent Dimerization of Anthraquinone Disulfonic Acid and Its Impact on Charge Storage [J].
Carney, Thomas J. ;
Collins, Steven J. ;
Moore, Jeffrey S. ;
Brushett, Fikile R. .
CHEMISTRY OF MATERIALS, 2017, 29 (11) :4801-4810