Upper and lower bounds of blow-up time in a non-local thermistor problem

被引:0
|
作者
Kavallaris, NI [1 ]
Nikolopoulos, CV [1 ]
Tzanetis, DE [1 ]
机构
[1] Natl Tech Univ Athens, Fac Sci Appl, Dept Math, Athens 15780, Greece
来源
Scattering and Biomedical Engineering: Modeling and Applications | 2002年
关键词
D O I
10.1142/9789812777140_0018
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We consider the non-local equation, u(t) = u(xx) + lambda(U)/(integral(1)(-1)f(u)dx)(2) with Robin boundary conditions. It is known that for lambda > lambda*the solution u(x, t) blows up globally in finite time t*. We find, for decreasing f and for lambda > lambda*, upper and lower bounds for t*, by using comparison methods.
引用
收藏
页码:224 / 232
页数:9
相关论文
共 50 条
  • [41] Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy
    Han, Yuzhu
    Gao, Wenjie
    Sun, Zhe
    Li, Haixia
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (10) : 2477 - 2483
  • [42] Upper and lower bounds for the blow-up time of a fourth-order parabolic equation with exponential nonlinearity
    Chang, Shuting
    Ye, Yaojun
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (11): : 6225 - 6234
  • [43] Global in time unbounded solutions for a non-local thermistor problem
    Kavallaris, NI
    Tzanetis, DE
    SCATTERING AND BIOMEDICAL ENGINEERING: MODELING AND APPLICATIONS, 2002, : 233 - 239
  • [44] On the blow-up of a solution of a non-local system of equations of hydrodynamic type
    Yushkov, E. V.
    IZVESTIYA MATHEMATICS, 2012, 76 (01) : 190 - 213
  • [45] Bounds for blow-up time in a semilinear parabolic problem with viscoelastic term
    Tian, Shuying
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (04) : 736 - 743
  • [46] The blow-up rate for a degenerate parabolic equation with a non-local source
    Deng, WB
    Duan, ZW
    Xie, CH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 264 (02) : 577 - 597
  • [47] A blow-up phenomenon for a non-local Liouville-type equation
    Luca Battaglia
    María Medina
    Angela Pistoia
    Journal d'Analyse Mathématique, 2023, 149 : 343 - 367
  • [48] A BLOW-UP PHENOMENON FOR A NON-LOCAL LIOUVILLE-TYPE EQUATION
    Battaglia, Luca
    Medina, Maria
    Pistoia, Angela
    JOURNAL D ANALYSE MATHEMATIQUE, 2023, 149 (01): : 343 - 367
  • [49] Bounds for blow-up time in a semilinear parabolic problem with variable exponents
    Rahmoune, Abita
    Benabderrahmane, Benyattou
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2022, 67 (01): : 181 - 188
  • [50] LOWER BOUNDS FOR BLOW-UP TIME IN A PARABOLIC PROBLEM WITH A GRADIENT TERM UNDER VARIOUS BOUNDARY CONDITIONS
    Marras, Monica
    Piro, Stella Vernier
    Viglialoro, Giuseppe
    KODAI MATHEMATICAL JOURNAL, 2014, 37 (03) : 532 - 543