Effect of an upward magnetic field on nanosized sulfide precipitation in ultra-low carbon steel

被引:2
作者
Duan, Kang-jia [1 ]
Zhang, Ling [2 ]
Yuan, Xi-zhi [1 ]
Han, Shan-shan [1 ]
Liu, Yu [3 ]
Huang, Qing-song [1 ]
机构
[1] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Peoples R China
[2] Chongqing Univ, Sch Mat Sci & Engn, Chongqing 400045, Peoples R China
[3] Helmholtz Zentrum Dresden Rossendorf HZDR, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany
基金
中国国家自然科学基金;
关键词
ultra-low carbon steel; magnetic field; sulfide precipitation; induction levitation; titanium; NONMETALLIC INCLUSION; MECHANICAL-PROPERTIES; FERRITE NUCLEATION; ACICULAR FERRITE; TI; TITANIUM; CARBOSULFIDE; SOLUBILITY; EVOLUTION; MN;
D O I
10.1007/s12613-015-1126-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An induction levitation melting (ILM) refining process is performed to remove most microsized inclusions in ultra-low carbon steel (UCS). Nanosized, spheroid shaped sulfide precipitates remain dispersed in the UCS. During the ILM process, the UCS is molten and is rotated under an upward magnetic field. With the addition of Ti additives, the spinning molten steel under the upward magnetic field ejects particles because of resultant centrifugal, floating, and magnetic forces. Magnetic force plays a key role in removing sub-micrometer-sized particles, composed of porous aluminum titanate enwrapping alumina nuclei. Consequently, sulfide precipitates with sizes less than 50 nm remain dispersed in the steel matrix. These findings open a path to the fabrication of clean steel or steel bearing only a nanosized strengthening phase.
引用
收藏
页码:714 / 720
页数:7
相关论文
共 29 条
[1]   Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides [J].
Abe, F. ;
Taneike, M. ;
Sawada, K. .
INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2007, 84 (1-2) :3-12
[2]   Bainitic and martensitic creep-resistant steels [J].
Abe, F .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2004, 8 (3-4) :305-311
[3]   TEM analysis of centreline sulphide precipitates modified by titanium additions to low carbon steel [J].
Aminorroaya, S. ;
Dippenaar, R. .
JOURNAL OF MICROSCOPY, 2008, 232 (01) :123-129
[4]   Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn steel [J].
Byun, JS ;
Shim, JH ;
Cho, YW ;
Lee, DN .
ACTA MATERIALIA, 2003, 51 (06) :1593-1606
[5]   Precipitation evolution during the annealing of an interstitial-free steel [J].
Carabajar, S ;
Merlin, J ;
Massardier, V ;
Chabanet, S .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 281 (1-2) :132-142
[6]   Effect of Ti-containing inclusions on the nucleation of acicular ferrite and mechanical properties of multipass weld metals [J].
Fattahi, M. ;
Nabhani, N. ;
Hosseini, M. ;
Arabian, N. ;
Rahimi, E. .
MICRON, 2013, 45 :107-114
[7]   Improvement of impact toughness of AWS E6010 weld metal by adding TiO2 nanoparticles to the electrode coating [J].
Fattahi, M. ;
Nabhani, N. ;
Vaezi, M. R. ;
Rahimi, E. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (27) :8031-8039
[8]   Identification of Ti-S-C-containing multi-phase precipitates in ultra-low carbon steels by analytical electron microscopy [J].
Hua, M ;
Garcia, CI ;
Eloot, K ;
DeArdo, AJ .
ISIJ INTERNATIONAL, 1997, 37 (11) :1129-1132
[9]   Precipitation behavior in ultra-low-carbon steels containing titanium and niobium [J].
Hua, M ;
Garcia, CI ;
DeArdo, AJ .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1997, 28 (09) :1769-1780
[10]   Solubility of titanium carbosulfide in austenite [J].
Iorio, LE ;
Garrison, WM .
ISIJ INTERNATIONAL, 2002, 42 (05) :545-550