Compositional dependence of phase formation and mechanical properties in three CoCrFeNi-(Mn/Al/Cu) high entropy alloys

被引:95
作者
Zhu, Z. G. [1 ]
Ma, K. H. [1 ]
Wang, Q. [2 ]
Shek, C. H. [1 ]
机构
[1] City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Mech & Biomed Engn, Hong Kong, Hong Kong, Peoples R China
关键词
High entropy alloys; Phase formation; Microstructure; Mechanical property; BULK METALLIC GLASSES; SOLID-SOLUTION PHASE; TENSILE PROPERTIES; SINGLE-PHASE; AL ADDITION; STABILITY; MICROSTRUCTURE; SEPARATION; FCC; BEHAVIOR;
D O I
10.1016/j.intermet.2016.09.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Starting from three typical equiatomic CoCrFeNiMn, CoCrFeNiAl and CoCrFeNiCu high entropy alloys (HEAs), we systematically investigated the compositional dependence of phase formation and mechanical properties of 78 alloys by varying the atomic ratio of the constituent elements. It was found that the simple phase structures, including a single face-centered cubic (FCC) or body-centered cubic (BCC) phase, duplex FCC phases, duplex BCC phases, instead of intermetallics, could form within a broad compositional landscape in 68 out of the 78 alloys not limited to the equiatomic composition where the configurational mixing entropy is maximum. This fact indicates that it may be the nature of the constituent elements that leads to simple phase structure formation. With compositional variation, the microstructure and mechanical properties including hardness and tensile properties show corresponding changes. It was found that the hardness variation of samples within the same structure is smaller for the FCC than that of the BCC. Tensile results indicated that the tensile elongation of (CoCrFeMn)((100-x))Ni-x (x = 0,10 and 20) alloys increases with Ni addition due to the decreasing volume fraction of sigma phase. For the (CoCrFeAl)((100-x))Ni-x (x = 27.3, 33.3, 38.5, 42.9 and 50) alloys, the yield strength decreases and tensile elongation increases with Ni addition due to decreasing volume fraction of BCC phase which is hard yet brittle. The present results are important to understand the phase formation and relationship between microstructure and mechanical properties in HEAs. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 63 条
[1]  
Bei H., 2013, Patent, Patent No. [US2013/0108502A1, 20130108502]
[2]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[3]   Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J].
Chuang, Ming-Hao ;
Tsai, Ming-Hung ;
Wang, Woei-Ren ;
Lin, Su-Jien ;
Yeh, Jien-Wei .
ACTA MATERIALIA, 2011, 59 (16) :6308-6317
[4]   Tensile properties of high- and medium-entropy alloys [J].
Gali, A. ;
George, E. P. .
INTERMETALLICS, 2013, 39 :74-78
[5]   High mixing entropy bulk metallic glasses [J].
Gao, X. Q. ;
Zhao, K. ;
Ke, H. B. ;
Ding, D. W. ;
Wang, W. H. ;
Bai, H. Y. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2011, 357 (21) :3557-3560
[6]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[7]   Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J].
Guo, Sheng ;
Ng, Chun ;
Lu, Jian ;
Liu, C. T. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (10)
[8]   More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase [J].
Guo, Sheng ;
Hu, Qiang ;
Ng, Chun ;
Liu, C. T. .
INTERMETALLICS, 2013, 41 :96-103
[9]   Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys [J].
Guo, Sheng ;
Ng, Chun ;
Liu, C. T. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 557 :77-81
[10]   Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase [J].
Guo, Sheng ;
Liu, C. T. .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2011, 21 (06) :433-446