BOSE-EINSTEIN CONDENSATION BEYOND MEAN FIELD: MANY-BODY BOUND STATE OF PERIODIC MICROSTRUCTURE

被引:5
作者
Margetis, Dionisios [1 ,2 ]
机构
[1] Univ Maryland, Dept Math, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[2] Univ Maryland, Ctr Sci Computat & Math Modeling, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Bose-Einstein condensation; homogenization; many-body perturbation theory; two-scale expansion; singular perturbation; mean field limit; bound state; NONLINEAR SCHRODINGER-EQUATION; GROSS-PITAEVSKII EQUATION; HARTREE-FOCK THEORY; SCATTERING THEORY; HARD SPHERES; LIMIT; GAS; TEMPERATURE; DERIVATION; EXISTENCE;
D O I
10.1137/110826576
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study stationary quantum fluctuations around a mean field limit in trapped, dilute atomic gases of repulsively interacting bosons at zero temperature. Our goal is to describe quantum-mechanically the lowest macroscopic many-body bound state consistent with a microscopic Hamiltonian that accounts for inhomogeneous particle scattering processes. In the mean field limit, the wave function of the condensate (macroscopic quantum state) satisfies a defocusing cubic nonlinear Schrodinger-type equation, the Gross-Pitaevskii equation. We include consequences of pair excitation, i.e., the scattering of particles in pairs from the condensate to other states, proposed in [T. T. Wu, J. Math. Phys., 2 (1961), pp. 105-123]. Our derivations rely on an uncontrolled yet physically motivated assumption for the many-body wave function. By relaxing mathematical rigor, from a particle Hamiltonian with a spatially varying interaction strength we derive via heuristics an integro-partial differential equation for the pair collision kernel, K, under a stationary condensate wave function, Phi. For a scattering length with periodic microstructure of subscale epsilon, we formally describe via classical homogenization the lowest many-body bound state in terms of Phi and K up to second order in epsilon. If the external potential is slowly varying, we solve the homogenized equations via boundary layer theory. As an application, we describe the partial depletion of the condensate.
引用
收藏
页码:383 / 417
页数:35
相关论文
共 50 条
[21]   Dynamic control and probing of many-body decoherence in double-well Bose-Einstein condensates [J].
Bar-Gill, Nir ;
Kurizki, Gershon ;
Oberthaler, Markus ;
Davidson, Nir .
PHYSICAL REVIEW A, 2009, 80 (05)
[22]   Many-body quantum fluctuation effects of Rosen-Zener transition in Bose-Einstein condensates [J].
Wang Jian-Zhong ;
Cao Hui ;
Dou Fu-Quan .
ACTA PHYSICA SINICA, 2012, 61 (22)
[23]   Zero-temperature Properties of Attractive Bose-Einstein Condensate by Correlated Many-body Approach [J].
Barnali Chakrabarti ;
T. K. Das ;
P. K. Debnath .
Journal of Low Temperature Physics, 2009, 157
[24]   Many-body tunneling dynamics of Bose-Einstein condensates and vortex states in two spatial dimensions [J].
Beinke, Raphael ;
Klaiman, Shachar ;
Cederbaum, Lorenz S. ;
Streltsov, Alexej I. ;
Alon, Ofir E. .
PHYSICAL REVIEW A, 2015, 92 (04)
[25]   Many-body dissipative flow of a confined scalar Bose-Einstein condensate driven by a Gaussian impurity [J].
Katsimiga, G. C. ;
Mistakidis, S., I ;
Koutentakis, G. M. ;
Kevrekidis, P. G. ;
Schmelcher, P. .
PHYSICAL REVIEW A, 2018, 98 (01)
[26]   Zero-temperature Properties of Attractive Bose-Einstein Condensate by Correlated Many-body Approach [J].
Chakrabarti, Barnali ;
Das, T. K. ;
Debnath, P. K. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2009, 157 (5-6) :527-540
[27]   Dynamics of the ground state and central vortex states in Bose-Einstein condensation [J].
Bao, WZ ;
Zhang, YZ .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (12) :1863-1896
[28]   ON THE RATE OF CONVERGENCE FOR THE MEAN FIELD APPROXIMATION OF BOSONIC MANY-BODY QUANTUM DYNAMICS [J].
Ammari, Zied ;
Falconi, Marco ;
Pawilowski, Boris .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (05) :1417-1442
[29]   Decay of a Bose-Einstein condensate in a dissipative lattice - the mean-field approximation and beyond [J].
Trimborn, F. ;
Witthaut, D. ;
Hennig, H. ;
Kordas, G. ;
Geisel, T. ;
Wimberger, S. .
EUROPEAN PHYSICAL JOURNAL D, 2011, 63 (01) :63-71
[30]   Zero-temperature, mean-field theory of atomic Bose-Einstein condensates [J].
Edwards, M ;
Dodd, RJ ;
Clark, CW ;
Burnett, K .
JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 1996, 101 (04) :553-565