Analytic Relationships Between Travel Time Reliability Measures

被引:106
作者
Pu, Wenjing [1 ]
机构
[1] Metropolitan Washington Council Govt, Dept Transportat Planning, Washington, DC 20002 USA
关键词
UNRELIABILITY;
D O I
10.3141/2254-13
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Travel time reliability is measured in various ways. Measures used in the transportation engineering field include the 90th or 95th percentile travel time, standard deviation, coefficient of variation, percent of variation, buffer index, planning time index, travel time index, skew statistic, misery index, frequency of congestion, and on-time arrival. Correlations and inconsistencies between these measures were observed on a case-by-case basis in past studies, without a full explanation or examination of the fundamental causes of such differing relationships. This paper analytically examines a number of reliability measures and explores their mathematical relationships and interdependencies. With the assumption of lognormal distributed travel times and the use of percent point function, a subset of reliability measures is expressed in relation to the shape parameter or the scale parameter of the lognormal distribution or to both. This process enables a clear understanding of the quantitative relationships and variation tendencies of different measures. Contrary to some previous studies and recommendations, this paper finds that the coefficient of variation, instead of the standard deviation, is a good proxy for several other reliability measures. The use of the average-based buffer index or average-based failure rate is not always appropriate, especially when travel time distributions are heavily skewed, in which case the median-based buffer index or failure rate is recommended.
引用
收藏
页码:122 / 130
页数:9
相关论文
共 24 条
[1]  
[Anonymous], 2010, INRIX NAT TRAFF SCOR
[2]  
[Anonymous], 2006, NIST SEMATECH E HDB
[3]   The valuation of reliability for personal travel [J].
Bates, J ;
Polak, J ;
Jones, P ;
Cook, A .
TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2001, 37 (2-3) :191-229
[4]  
Booz Allen Hamilton, 1998, 1998 CAL TRANSP PLAN
[5]  
Cambridge Systematics Inc. Dowling Associates Inc. System Metrics Group Inc. & Texas Transportation Institute, 2008, 618 NCHRP CAMBR SYST
[6]  
Cambridge Systematics Inc. High Street Consulting Group TransTech Management Inc. Spy Pond Partners and Ross & Associates, 2009, S2CO2RR SHRP CAMBR S
[7]  
Cambridge Systematics Inc. Texas Transportation Institute University of Washington and Dowling Associates, 2003, 3 FSHRP COMBR SYST I
[8]   Flow Breakdown and Travel Time Reliability [J].
Dong, Jing ;
Mahmassani, Hani S. .
TRANSPORTATION RESEARCH RECORD, 2009, (2124) :203-212
[9]  
Dowling R.G., 2009, 88 ANN M TRANSP RES
[10]  
FHWA, URB CONG REP UCR DOC