Recent Progress on MOF-Derived Nanomaterials as Advanced Electrocatalysts in Fuel Cells

被引:114
作者
Song, Zhongxin [1 ]
Cheng, Niancai [1 ]
Lushington, Andrew [1 ]
Sun, Xueliang [1 ]
机构
[1] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
MOF-derived nanomaterials; fuel cells; electrocatalyst; oxygen reduction reaction; METAL-ORGANIC FRAMEWORK; OXYGEN-REDUCTION REACTION; DOPED POROUS CARBON; ORDERED MESOPOROUS CARBON; HIGH-SURFACE-AREA; HIGHLY EFFICIENT; FREE CATALYSTS; IN-SITU; HYBRID ELECTROCATALYSTS; NITROGEN;
D O I
10.3390/catal6080116
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing a low cost, highly active and durable cathode material is a high-priority research direction toward the commercialization of low-temperature fuel cells. However, the high cost and low stability of useable materials remain a considerable challenge for the widespread adoption of fuel cell energy conversion devices. The electrochemical performance of fuel cells is still largely hindered by the high loading of noble metal catalyst (Pt/Pt alloy) at the cathode, which is necessary to facilitate the inherently sluggish oxygen reduction reaction (ORR). Under these circumstances, the exploration of alternatives to replace expensive Pt-alloy for constructing highly efficient non-noble metal catalysts has been studied intensively and received great interest. Metal-organic frameworks (MOFs) a novel type of porous crystalline materials, have revealed potential application in the field of clean energy and demonstrated a number of advantages owing to their accessible high surface area, permanent porosity, and abundant metal/organic species. Recently, newly emerging MOFs materials have been used as templates and/or precursors to fabricate porous carbon and related functional nanomaterials, which exhibit excellent catalytic activities toward ORR or oxygen evolution reaction (OER). In this review, recent advances in the use of MOF-derived functional nanomaterials as efficient electrocatalysts in fuel cells are summarized. Particularly, we focus on the rational design and synthesis of highly active and stable porous carbon-based electrocatalysts with various nanostructures by using the advantages of MOFs precursors. Finally, further understanding and development, future trends, and prospects of advanced MOF-derived nanomaterials for more promising applications of clean energy are presented.
引用
收藏
页数:19
相关论文
共 75 条
[1]   A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells [J].
Banham, Dustin ;
Ye, Siyu ;
Pei, Katie ;
Ozaki, Jun-ichi ;
Kishimoto, Takeaki ;
Imashiro, Yasuo .
JOURNAL OF POWER SOURCES, 2015, 285 :334-348
[2]   Synthesis of Nanoporous Carbon- Cobalt- Oxide Hybrid Electrocatalysts by Thermal Conversion of Metal- Organic Frameworks [J].
Chaikittisilp, Watcharop ;
Torad, Nagy L. ;
Li, Cuiling ;
Imura, Masataka ;
Suzuki, Norihiro ;
Ishihara, Shinsuke ;
Ariga, Katsuhiko ;
Yamauchi, Yusuke .
CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (15) :4217-4221
[3]   A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications [J].
Chaikittisilp, Watcharop ;
Ariga, Katsuhiko ;
Yamauchi, Yusuke .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (01) :14-19
[4]   Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces [J].
Chen, Chen ;
Kang, Yijin ;
Huo, Ziyang ;
Zhu, Zhongwei ;
Huang, Wenyu ;
Xin, Huolin L. ;
Snyder, Joshua D. ;
Li, Dongguo ;
Herron, Jeffrey A. ;
Mavrikakis, Manos ;
Chi, Miaofang ;
More, Karren L. ;
Li, Yadong ;
Markovic, Nenad M. ;
Somorjai, Gabor A. ;
Yang, Peidong ;
Stamenkovic, Vojislav R. .
SCIENCE, 2014, 343 (6177) :1339-1343
[5]   From Bimetallic Metal-Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis [J].
Chen, Yu-Zhen ;
Wang, Chengming ;
Wu, Zhen-Yu ;
Xiong, Yujie ;
Xu, Qiang ;
Yu, Shu-Hong ;
Jiang, Hai-Long .
ADVANCED MATERIALS, 2015, 27 (34) :5010-5016
[6]   Atomic scale enhancement of metal-support interactions between Pt and ZrC for highly stable electrocatalysts [J].
Cheng, Niancai ;
Banis, Mohammad Norouzi ;
Liu, Jian ;
Riese, Adam ;
Mu, Shichun ;
Li, Ruying ;
Sham, Tsun-Kong ;
Sun, Xueliang .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (05) :1450-1455
[7]   Extremely Stable Platinum Nanoparticles Encapsulated in a Zirconia Nanocage by Area-Selective Atomic Layer Deposition for the Oxygen Reduction Reaction [J].
Cheng, Niancai ;
Banis, Mohammad Norouzi ;
Liu, Jian ;
Riese, Adam ;
Li, Xia ;
Li, Ruying ;
Ye, Siyu ;
Knights, Shanna ;
Sun, Xueliang .
ADVANCED MATERIALS, 2015, 27 (02) :277-281
[8]   Improved lifetime of PEM fuel cell catalysts through polymer stabilization [J].
Cheng, Niancai ;
Mu, Shichun ;
Pan, Mu ;
Edwards, Peter P. .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (08) :1610-1614
[9]   Binary and Ternary Doping of Nitrogen, Boron, and Phosphorus into Carbon for Enhancing Electrochemical Oxygen Reduction Activity [J].
Choi, Chang Hyuck ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
ACS NANO, 2012, 6 (08) :7084-7091
[10]   Engineering Interface and Surface of Noble Metal Nanoparticle Nanotubes toward Enhanced Catalytic Activity for Fuel Cell Applications [J].
Cui, Chun-Hua ;
Yu, Shu-Hong .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (07) :1427-1437