Positive periodic solutions of second-order nonlinear differential systems with two parameters

被引:11
作者
Wu, Jun [2 ]
Wang, Zhicheng [1 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Dept Appl Math, Changsha 410082, Hunan, Peoples R China
[2] Changsha Univ Sci Technol, Coll Math, Changsha 410076, Peoples R China
基金
中国国家自然科学基金;
关键词
positive periodic solutions; second-order differential system; fixed point theorem; fixed point index; nonlinear systems;
D O I
10.1016/j.camwa.2007.07.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By employing the Deimling fixed point index theory, we consider a class of second-order nonlinear differential systems with two parameters (lambda, mu) epsilon R-+(2) \ {(0, 0)}. We show that there exist three nonempty subsets of R-+(2) \ {(0, 0)}: Gamma, Delta(1) and Delta(2) such that R-+(2) \ {(0, 0)} = Gamma boolean OR Delta(1) boolean OR Delta(2) and the system has at least two positive periodic solutions for (lambda, mu) epsilon Delta(1), one positive periodic solution for (lambda, mu) epsilon Gamma and no positive periodic solutions for (lambda, mu) epsilon Delta(2). Meanwhile, we find two straight lines L-1 and L-2 such that Gamma lies between L-1 and L-2. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:43 / 54
页数:12
相关论文
共 14 条