Hardy spaces, BMO, and boundary value problems for the Laplacian on a smooth domain in RN

被引:81
作者
Chang, DC
Dafni, G
Stein, EM
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
[3] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
D O I
10.1090/S0002-9947-99-02111-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study two different local H-p spaces, 0 < p less than or equal to 1, on a smooth domain in R-n, by means of maximal functions and atomic decomposition. We prove the regularity in these spaces, as well as in the corresponding dual BMO spaces, of the Dirichlet and Neumann problems for the Laplacian.
引用
收藏
页码:1605 / 1661
页数:57
相关论文
共 18 条
  • [11] HARDY AND LIPSCHITZ-SPACES ON SUBSETS OF RN
    JONSSON, A
    SJOGREN, P
    WALLIN, H
    [J]. STUDIA MATHEMATICA, 1984, 80 (02) : 141 - 166
  • [12] KRANTZ SG, ELLIPTIC BOUNDARY VA
  • [13] HP SPACES OVER OPEN SUBSETS OF RN
    MIYACHI, A
    [J]. STUDIA MATHEMATICA, 1990, 95 (03) : 205 - 228
  • [14] Rudin W., 1991, FUNCTIONAL ANAL
  • [15] Rychkov VS, 1998, STUD MATH, V127, P277
  • [16] Stein E., 1971, Introduction to Fourier Analysis on Euclidean Spaces
  • [17] Stein E M., 1993, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals
  • [18] STEIN E. M., 1970, Singular integrals and differentiability properties of funcions, V30