Electro-Fenton treatment of dye solution containing Orange II: Influence of operational parameters

被引:184
作者
Daneshvar, Nezamaddin [1 ]
Aber, Soheil [2 ]
Vatanpour, Vahid [1 ]
Rasoulifard, Mohammad Hossein [1 ]
机构
[1] Univ Tabriz, Fac Chem, Dept Appl Chem, Water & Wastewater Treatment Res Lab, Tabriz, Iran
[2] Univ Tabriz, Fac Chem, Dept Appl Chem, Environm Protect Res Lab, Tabriz, Iran
关键词
electro-Fenton; water treatment; Orange II; advanced oxidation process;
D O I
10.1016/j.jelechem.2007.12.005
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The electro-Fenton process was used to assess the decoloration of Orange II in aqueous solutions. Hydrogen peroxide (H2O2) was electro-generated by reduction of dissolved oxygen (DO) in acidic solutions containing dilute supporting electrolyte. This oxidation process allows the production of active intermediates, which react on the organic compounds, leading to their mineralization. Decoloration experiments were performed in the presence of perchlorate, chloride and sulfate electrolyte media at pH 3.0 under potential controlled electrolysis conditions. Effect of operational parameters such as cathodic potential, oxygen mass flow rate and inert supporting electrolyte type and concentration were investigated to find the best experimental conditions for achieving overall dye decoloration. Complete decoloration of Orange II occurs in less than 90 min. In addition, effect of cathode surface area and electrolyte concentration in the accumulation of H2O2 and behavior of the Fe3+/Fe2+ in the electro-Fenton system was examined. Results show that potential of -0.5 V vs. SCE, 0.05 M NaClO4 electrolyte, O-2 sparging rate of 8 ml/min and diluted dye concentration were the best conditions for decoloration of the Orange II by electro-Fenton process. The mineralization of the initial pollutant was investigated by total organic carbon measurements that show a 75% mineralization of 2 x 10(-5) M dye at 180 min. Also, degradation by-products were identified with GC-MS analysis. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:165 / 174
页数:10
相关论文
共 65 条
[1]   EFFECTS OF COMMON INORGANIC ANIONS ON RATES OF PHOTOCATALYTIC OXIDATION OF ORGANIC-CARBON OVER ILLUMINATED TITANIUM-DIOXIDE [J].
ABDULLAH, M ;
LOW, GKC ;
MATTHEWS, RW .
JOURNAL OF PHYSICAL CHEMISTRY, 1990, 94 (17) :6820-6825
[2]   Electrochemical degradation of the dye indigo carmine at boron-doped diamond anode for wastewaters remediation [J].
Ammar, Salah ;
Abdelhedi, Ridha ;
Flox, Cristina ;
Arias, Conchita ;
Brillas, Enric .
ENVIRONMENTAL CHEMISTRY LETTERS, 2006, 4 (04) :229-233
[3]   REACTIONS OF FERROUS AND FERRIC IONS WITH HYDROGEN PEROXIDE .2. THE FERRIC ION REACTION [J].
BARB, WG ;
BAXENDALE, JH ;
GEORGE, P ;
HARGRAVE, KR .
TRANSACTIONS OF THE FARADAY SOCIETY, 1951, 47 (06) :591-616
[4]   Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods [J].
Boye, B ;
Dieng, MM ;
Brillas, E .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (13) :3030-3035
[5]   Ferryl ion, a compound of tetravalent iron [J].
Bray, WC ;
Gorin, MH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1932, 54 :2124-2125
[6]   Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes [J].
Brillas, E ;
Mur, E ;
Sauleda, R ;
Sanchez, L ;
Peral, J ;
Domenech, X ;
Casado, J .
APPLIED CATALYSIS B-ENVIRONMENTAL, 1998, 16 (01) :31-42
[7]   Mineralization of 2,4-D by advanced electrochemical oxidation processes [J].
Brillas, E ;
Calpe, JC ;
Casado, J .
WATER RESEARCH, 2000, 34 (08) :2253-2262
[8]   Adsorption study for the removal of a basic dye: experimental and modeling [J].
Chakraborty, S ;
De, S ;
DasGupta, S ;
Basu, JK .
CHEMOSPHERE, 2005, 58 (08) :1079-1086
[9]   Fenton degradation of malachite green catalyzed by aromatic additives [J].
Chen, F ;
Ma, WH ;
He, JJ ;
Zhao, JC .
JOURNAL OF PHYSICAL CHEMISTRY A, 2002, 106 (41) :9485-9490
[10]   Electrochemical technologies in wastewater treatment [J].
Chen, GH .
SEPARATION AND PURIFICATION TECHNOLOGY, 2004, 38 (01) :11-41