Mean-Field Evolution of Fermionic Mixed States

被引:46
作者
Benedikter, Niels [1 ,4 ]
Jaksic, Vojkan [2 ]
Porta, Marcello [3 ]
Saffirio, Chiara [3 ]
Schlein, Benjamin [3 ]
机构
[1] Univ Rome Tre, Rome, Italy
[2] McGill Univ, Dept Math & Stat, 805 Sherbrooke St West, Montreal, PQ H3A 2K6, Canada
[3] Univ Zurich, Dept Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[4] Univ Copenhagen, Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen, Denmark
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会;
关键词
NONLINEAR SCHRODINGER-EQUATION; GROSS-PITAEVSKII EQUATION; CENTRAL-LIMIT-THEOREM; RIGOROUS DERIVATION; SCATTERING THEORY; DYNAMICS;
D O I
10.1002/cpa.21598
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the dynamics of fermionic mixed states in the mean-field regime. We consider initial states that are close to quasi-free states and prove that, under suitable assumptions on the initial data and on the many-body interaction, the quantum evolution of such initial data is well approximated by a suitable quasi-free state. In particular, we prove that the evolution of the reduced one-particle density matrix converges, as the number of particles goes to infinity, to the solution of the time-dependent Hartree-Fock equation. Our result holds for all times and gives effective estimates on the rate of convergence of the many-body dynamics towards the Hartree-Fock evolution.(c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:2250 / 2303
页数:54
相关论文
共 39 条
  • [1] Rigorous derivation of the cubic NLS in dimension one
    Adami, Riccardo
    Golse, Francois
    Teta, Alessandro
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2007, 127 (06) : 1193 - 1220
  • [2] Mean field limit for bosons and propagation of Wigner measures
    Ammari, Z.
    Nier, F.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (04)
  • [3] [Anonymous], PREPRINT
  • [4] ARAKI H, 1964, HELV PHYS ACTA, V37, P136
  • [5] Mean field dynamics of fermions and the time-dependent Hartree-Fock equation
    Bardos, C
    Golse, F
    Gottlieb, AD
    Mauser, NJ
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (06): : 665 - 683
  • [6] Bardos C., 2000, Methods Appl. Anal., V7, P275
  • [7] A Central Limit Theorem in Many-Body Quantum Dynamics
    Ben Arous, Gerard
    Kirkpatrick, Kay
    Schlein, Benjamin
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 321 (02) : 371 - 417
  • [8] Quantitative Derivation of the Gross-Pitaevskii Equation
    Benedikter, Niels
    de Oliveira, Gustavo
    Schlein, Benjamin
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (08) : 1399 - 1482
  • [9] Mean-Field Evolution of Fermionic Systems
    Benedikter, Niels
    Porta, Marcello
    Schlein, Benjamin
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (03) : 1087 - 1131
  • [10] Mean-field dynamics of fermions with relativistic dispersion
    Benedikter, Niels
    Porta, Marcello
    Schlein, Benjamin
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (02)