Micro/Nano Gas Sensors: A New Strategy Towards In-Situ Wafer-Level Fabrication of High-Performance Gas Sensing Chips

被引:56
作者
Xu, Lei [1 ,3 ]
Dai, Zhengfei [2 ]
Duan, Guotao [2 ]
Guo, Lianfeng [1 ]
Wang, Yi [1 ]
Zhou, Hong [1 ]
Liu, Yanxiang [1 ]
Cai, Weiping [2 ]
Wang, Yuelin [1 ]
Li, Tie [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Sci & Technol Microsyst Lab, Shanghai 200050, Peoples R China
[2] Chinese Acad Sci, Key Lab Mat Phys, Anhui Key lab Nanomat & Nanotechnol, Inst Solid State Phys, Hefei 230031, Anhui, Peoples R China
[3] CALTECH, Pasadena, CA 91125 USA
基金
中国国家自然科学基金;
关键词
ELECTRONIC NOSE; SNO2; NANOPARTICLES; OXIDE-NANOWIRE; METAL; TEMPERATURE; SENSITIVITY; NO2; CHEMIRESISTORS; NANOTUBES; CATALYSIS;
D O I
10.1038/srep10507
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nano-structured gas sensing materials, in particular nanoparticles, nanotubes, and nanowires, enable high sensitivity at a ppb level for gas sensors. For practical applications, it is highly desirable to be able to manufacture such gas sensors in batch and at low cost. We present here a strategy of in-situ wafer-level fabrication of the high-performance micro/nano gas sensing chips by naturally integrating microhotplatform (MHP) with nanopore array (NPA). By introducing colloidal crystal template, a wafer-level ordered homogenous SnO2 NPA is synthesized in-situ on a 4-inch MHP wafer, able to produce thousands of gas sensing units in one batch. The integration of micromachining process and nanofabrication process endues micro/nano gas sensing chips at low cost, high throughput, and with high sensitivity (down to similar to 20 ppb), fast response time (down to similar to 1 s), and low power consumption (down to similar to 30 mW). The proposed strategy of integrating MHP with NPA represents a versatile approach for in-situ wafer-level fabrication of high-performance micro/nano gas sensors for real industrial applications.
引用
收藏
页数:12
相关论文
共 63 条
[31]   High-sensitivity humidity sensor based on a single SnO2 nanowire [J].
Kuang, Qin ;
Lao, Changshi ;
Wang, Zhong Lin ;
Xie, Zhaoxiong ;
Zheng, Lansun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (19) :6070-+
[32]   Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule [J].
Li, Yongfeng ;
Yin, Wanjian ;
Deng, Rui ;
Chen, Rui ;
Chen, Jing ;
Yan, Qingyu ;
Yao, Bin ;
Sun, Handong ;
Wei, Su-Huai ;
Wu, Tom .
NPG ASIA MATERIALS, 2012, 4 :e30-e30
[33]  
Liu N, 2011, NAT MATER, V10, P631, DOI [10.1038/NMAT3029, 10.1038/nmat3029]
[34]   Ultrahigh-gain single SnO2 nanowire photodetectors made with ferromagnetic nickel electrodes [J].
Lu, Meng-Lin ;
Weng, Tong-Min ;
Chen, Ju-Ying ;
Chen, Yang-Fang .
NPG ASIA MATERIALS, 2012, 4 :e26-e26
[35]   Single β-AgVO3 Nanowire H2S Sensor [J].
Mai, Liqiang ;
Xu, Lin ;
Gao, Qian ;
Han, Chunhua ;
Hu, Bin ;
Pi, Yuqiang .
NANO LETTERS, 2010, 10 (07) :2604-2608
[36]   Gas Sensing of SnO2 Nanocrystals Revisited: Developing Ultra-Sensitive Sensors for Detecting the H2S Leakage of Biogas [J].
Mei, Lin ;
Chen, Yuejiao ;
Ma, Jianmin .
SCIENTIFIC REPORTS, 2014, 4
[37]   Coupling nanowire chemiresistors with MEMS microhotplate gas sensing platforms [J].
Meier, Douglas C. ;
Semancik, Steve ;
Button, Bradley ;
Strelcov, Evgheni ;
Kolmakov, Andrei .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[38]  
Miller T., 2006, Functional Nanomaterials, V30, P453, DOI DOI 10.5840/QUESTIONS200661
[39]   A new method for direct preparation of tin dioxide nanocomposite materials [J].
Miller, TA ;
Bakrania, SD ;
Perez, C ;
Wooldridge, MS .
JOURNAL OF MATERIALS RESEARCH, 2005, 20 (11) :2977-2987
[40]   Miniaturized gas ionization sensors using carbon nanotubes [J].
Modi, A ;
Koratkar, N ;
Lass, E ;
Wei, BQ ;
Ajayan, PM .
NATURE, 2003, 424 (6945) :171-174