Micro/Nano Gas Sensors: A New Strategy Towards In-Situ Wafer-Level Fabrication of High-Performance Gas Sensing Chips

被引:56
作者
Xu, Lei [1 ,3 ]
Dai, Zhengfei [2 ]
Duan, Guotao [2 ]
Guo, Lianfeng [1 ]
Wang, Yi [1 ]
Zhou, Hong [1 ]
Liu, Yanxiang [1 ]
Cai, Weiping [2 ]
Wang, Yuelin [1 ]
Li, Tie [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Sci & Technol Microsyst Lab, Shanghai 200050, Peoples R China
[2] Chinese Acad Sci, Key Lab Mat Phys, Anhui Key lab Nanomat & Nanotechnol, Inst Solid State Phys, Hefei 230031, Anhui, Peoples R China
[3] CALTECH, Pasadena, CA 91125 USA
基金
中国国家自然科学基金;
关键词
ELECTRONIC NOSE; SNO2; NANOPARTICLES; OXIDE-NANOWIRE; METAL; TEMPERATURE; SENSITIVITY; NO2; CHEMIRESISTORS; NANOTUBES; CATALYSIS;
D O I
10.1038/srep10507
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nano-structured gas sensing materials, in particular nanoparticles, nanotubes, and nanowires, enable high sensitivity at a ppb level for gas sensors. For practical applications, it is highly desirable to be able to manufacture such gas sensors in batch and at low cost. We present here a strategy of in-situ wafer-level fabrication of the high-performance micro/nano gas sensing chips by naturally integrating microhotplatform (MHP) with nanopore array (NPA). By introducing colloidal crystal template, a wafer-level ordered homogenous SnO2 NPA is synthesized in-situ on a 4-inch MHP wafer, able to produce thousands of gas sensing units in one batch. The integration of micromachining process and nanofabrication process endues micro/nano gas sensing chips at low cost, high throughput, and with high sensitivity (down to similar to 20 ppb), fast response time (down to similar to 1 s), and low power consumption (down to similar to 30 mW). The proposed strategy of integrating MHP with NPA represents a versatile approach for in-situ wafer-level fabrication of high-performance micro/nano gas sensors for real industrial applications.
引用
收藏
页数:12
相关论文
共 63 条
[1]  
[Anonymous], 2014, FIGARO TGS 2620 PROD
[2]   Combinatorial libraries of semiconductor gas sensors as inorganic electronic noses [J].
Aronova, MA ;
Chang, KS ;
Takeuchi, I ;
Jabs, H ;
Westerheim, D ;
Gonzalez-Martin, A ;
Kim, J ;
Lewis, B .
APPLIED PHYSICS LETTERS, 2003, 83 (06) :1255-1257
[3]   Tin-Oxide-Nanowire-Based Electronic Nose Using Heterogeneous Catalysis as a Functionalization Strategy [J].
Baik, Jeong Min ;
Zielke, Mark ;
Kim, Myung Hwa ;
Turner, Kimberly L. ;
Wodtke, Alec M. ;
Moskovits, Martin .
ACS NANO, 2010, 4 (06) :3117-3122
[4]   Conduction model of metal oxide gas sensors [J].
Barsan, N ;
Weimar, U .
JOURNAL OF ELECTROCERAMICS, 2001, 7 (03) :143-167
[5]   Nanowires Assembled SnO2 Nanopolyhedrons with Enhanced Gas Sensing Properties [J].
Chen, Di ;
Xu, Jing ;
Xie, Zhong ;
Shen, Guozhen .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (06) :2112-2117
[6]   Templating Synthesis of SnO2 Nanotubes Loaded with Ag2O Nanoparticles and Their Enhanced Gas Sensing Properties [J].
Chen, Xing ;
Guo, Zheng ;
Xu, Wei-Hong ;
Yao, Hong-Bin ;
Li, Min-Qiang ;
Liu, Jin-Huai ;
Huang, Xing-Jiu ;
Yu, Shu-Hong .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (11) :2049-2056
[7]   Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J].
Collins, PG ;
Bradley, K ;
Ishigami, M ;
Zettl, A .
SCIENCE, 2000, 287 (5459) :1801-1804
[8]   Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts [J].
Comini, E ;
Faglia, G ;
Sberveglieri, G ;
Pan, ZW ;
Wang, ZL .
APPLIED PHYSICS LETTERS, 2002, 81 (10) :1869-1871
[9]   Resonant tunneling modulation in quasi-2D Cu2O/SnO2 p-n horizontal-multi-layer heterostructure for room temperature H2S sensor application [J].
Cui, Guangliang ;
Zhang, Mingzhe ;
Zou, Guangtian .
SCIENTIFIC REPORTS, 2013, 3
[10]  
Dai Z., 2015, J MATER CHEM A, DOI [10.1039/C1034TA05438E, DOI 10.1039/C1034TA05438E]