Transferrable dielectric DBR membranes for versatile GaN-based polariton and VCSEL technology

被引:4
作者
Amargianitakis, E. A. [1 ,2 ]
Kazazis, S. A. [2 ,3 ]
Doundoulakis, G. [2 ,3 ]
Stavrinidis, G. [2 ]
Konstantinidis, G. [2 ]
Delamadeleine, E. [4 ]
Monroy, E. [4 ]
Pelekanos, N. T. [1 ,2 ]
机构
[1] Univ Crete, Dept Mat Sci & Technol, POB 2208, Iraklion 71003, Greece
[2] IESL FORTH, Microelect Res Grp, POB 1385, Iraklion 71110, Greece
[3] Univ Crete, Dept Phys, POB 2208, Iraklion 71003, Greece
[4] Univ Grenoble Alpes, CEA, IRIG PHELIQS, 17 Martyrs, F-38000 Grenoble, France
关键词
Dielectric DBR mirrors; Transferrable DBR membranes; Microengineering and fabrication; Polariton microcavities;
D O I
10.1016/j.mee.2020.111276
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present an innovative process to realize planar GaN microcavities, based on transferrable high-quality oxidebased Distributed-Bragg-Reflector (t-DBR) membranes. Unlike the widely used direct DBR deposition, which is not always feasible, the concept of t-DBR membranes allows their versatile use as top mirrors in all kinds of vertical-cavity surface emitting geometry devices, including light emitting diodes and lasers. The process illustrated here starts by evaporating first a 4-pair SiO2/Ta2O5 DBR centered around 400 nm on a lithographically patterned GaAs substrate. The GaAs substrate is subsequently removed by wet-etching, and the released DBR membranes are transferred onto other templates for their use as top mirrors in microcavities. By transferring a 4-pair top DBR on an 8-pair bottom SiO2/Ta2O5 DBR, a distinct cavity mode appears due to the formed lambda/2 oxide cavity with a Q-factor of 110. If the 4-pair top DBR is transferred on 200 nm-thick GaN/AlGaN quantum well-containing membranes sitting on 10-pair bottom DBR5, complete all-dielectric nitride polariton structures are fabricated with pronounced strong-coupling characteristics.
引用
收藏
页数:5
相关论文
共 25 条
[1]   Absorption in ultrathin GaN-based membranes: The role of standing wave effects [J].
Amargianitakis, E. A. ;
Jayaprakash, R. ;
Kalaitzakis, F. G. ;
Delamadeleine, E. ;
Monroy, E. ;
Pelekanos, N. T. .
JOURNAL OF APPLIED PHYSICS, 2019, 126 (08)
[2]  
Amargianitakis E. A., UNPUB
[3]   Improved GaN Quantum Well Microcavities for Robust Room Temperature Polaritonics [J].
Amargianitakis, Emmanouil A. ;
Miziou, Foteini ;
Androulidaki, Maria ;
Tsagaraki, Katerina ;
Kostopoulos, Athanasios ;
Konstantinidis, George ;
Delamadeleine, Eric ;
Monroy, Eva ;
Pelekanos, Nikos T. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2019, 256 (06)
[4]   Miniature Fabry-Perot pressure sensor created by using UV-molding process with an optical fiber based mold [J].
Bae, H. ;
Yu, M. .
OPTICS EXPRESS, 2012, 20 (13) :14573-14583
[5]   Strong light-matter coupling in ultrathin double dielectric mirror GaN microcavities [J].
Bejtka, K. ;
Reveret, F. ;
Martin, R. W. ;
Edwards, P. R. ;
Vasson, A. ;
Leymarie, J. ;
Sellers, I. R. ;
Duboz, J. Y. ;
Leroux, M. ;
Semond, F. .
APPLIED PHYSICS LETTERS, 2008, 92 (24)
[6]   Room Temperature Electrically Injected Polariton Laser [J].
Bhattacharya, Pallab ;
Frost, Thomas ;
Deshpande, Saniya ;
Baten, Md Zunaid ;
Hazari, Arnab ;
Das, Ayan .
PHYSICAL REVIEW LETTERS, 2014, 112 (23)
[7]   Crack-free fully epitaxial nitride microcavity using highly reflective AllnN/GaN Bragg mirrors -: art. no. 031107 [J].
Carlin, JF ;
Dorsaz, J ;
Feltin, E ;
Butté, R ;
Grandjean, N ;
Ilegems, M ;
Laügt, M .
APPLIED PHYSICS LETTERS, 2005, 86 (03) :1-3
[8]   Ultra-thin distributed Bragg reflectors via stacked single-crystal silicon nanomembranes [J].
Cho, Minkyu ;
Seo, Jung-Hun ;
Lee, Jaeseong ;
Zhao, Deyin ;
Mi, Hongyi ;
Yin, Xin ;
Kim, Munho ;
Wang, Xudong ;
Zhou, Weidong ;
Ma, Zhenqiang .
APPLIED PHYSICS LETTERS, 2015, 106 (18)
[9]   Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity [J].
Christmann, Gabriel ;
Butte, Raphael ;
Feltin, Eric ;
Carlin, Jean-Francois ;
Grandjean, Nicolas .
APPLIED PHYSICS LETTERS, 2008, 93 (05)
[10]   Room-temperature polariton lasing in semiconductor microcavities [J].
Christopoulos, S. ;
von Hogersthal, G. Baldassarri Hoger ;
Grundy, A. J. D. ;
Lagoudakis, P. G. ;
Kavokin, A. V. ;
Baumberg, J. J. ;
Christmann, G. ;
Butte, R. ;
Feltin, E. ;
Carlin, J. -F. ;
Grandjean, N. .
PHYSICAL REVIEW LETTERS, 2007, 98 (12)