Interior gradient estimates for solutions to the linearized Monge-Ampere equation

被引:19
作者
Gutierrez, Cristian E. [1 ]
Truyen Nguyen [2 ]
机构
[1] Temple Univ, Dept Math, Philadelphia, PA 19122 USA
[2] Univ Akron, Dept Math, Akron, OH 44325 USA
基金
美国国家科学基金会;
关键词
Monge-Ampere equations; Holder estimates;
D O I
10.1016/j.aim.2011.06.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi be a convex function on a convex domain Omega subset of R-n, n >= 1. The corresponding linearized Monge-Ampere equation is trace(Phi D(2)u) = f, where Phi := det D-2 phi(D-2 phi)(-1) is the matrix of cofactors of D-2 phi. We establish interior Holder estimates for derivatives of solutions to such equation when the function f on the right-hand side belongs to L-p(Omega) for some p > n. The function phi is assumed to be such that phi is an element of C((Omega) over bar) with phi = 0 on partial derivative Omega and the Monge-Ampere measure det D-2 phi is given by a density g is an element of C(Omega) which is bounded away from zero and infinity. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2034 / 2070
页数:37
相关论文
共 22 条
[1]  
[Anonymous], 1997, Courant Lecture Notes
[3]  
Caffarelli L.A., 1995, AM MATH SOC C PUBL, V43
[4]   INTERIOR A PRIORI ESTIMATES FOR SOLUTIONS OF FULLY NON-LINEAR EQUATIONS [J].
CAFFARELLI, LA .
ANNALS OF MATHEMATICS, 1989, 130 (01) :189-213
[5]  
Caffarelli LA, 1997, AM J MATH, V119, P423
[6]   SOME REGULARITY PROPERTIES OF SOLUTIONS OF MONGE AMPERE EQUATION [J].
CAFFARELLI, LA .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (8-9) :965-969
[7]   INTERIOR W2,P ESTIMATES FOR SOLUTIONS OF THE MONGE-AMPERE EQUATION [J].
CAFFARELLI, LA .
ANNALS OF MATHEMATICS, 1990, 131 (01) :135-150
[8]  
Caldern A. P., 1961, Studia Math, V20, P171
[9]  
Donaldson SK, 2005, COLLECT MATH, V56, P103
[10]  
Gilbarg D., 1977, Grundlehren der Mathematischen Wissenschaften, V224