An Efficient FDTD Method to Calculate Lightning Electromagnetic Fields Over Irregular Terrain Adopting the Moving Computational Domain Technique

被引:9
作者
Hou, Wenhao [1 ,2 ]
Azadifar, Mohammad [2 ]
Rubinstein, Marcos [3 ]
Zhang, Qilin [1 ]
Rachidi, Fatine [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Key Lab Aerosol Cloud Precipitat, China Meteorol Adm,Key Lab Meteorol Disaster,Mini, Nanjing 210044, Peoples R China
[2] Swiss Fed Inst Technol, Electromagnet Compatibil Lab, CH-1015 Lausanne, Switzerland
[3] Univ Appl Sci Western Switzerland, CH-1401 Yverdon, Switzerland
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Finite difference methods; Time-domain analysis; Microsoft Windows; Lightning; Computational modeling; Delay effects; Arrival time delay; finite-difference time-domain (FDTD) efficiency; irregular terrain; lightning electromagnetic field; moving computational domain; PROPAGATION;
D O I
10.1109/TEMC.2019.2917282
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present an improved finite-difference time-domain (FDTD) method based on the moving computational domain technique for the calculation of lightning-generated fields over large-scale irregular terrain. In the improved method, a spatial window moving along with the wavefront at the speed of light is defined and, at each time step, the field components are updated only in that window. The time delay of the wavefront arrival caused by the propagation effect and the irregular terrain is considered when determining the width of the moving window. The efficiency and accuracy of the improved model are validated by comparing its results with those calculated by conventional FDTD, considering an example of lightning-radiated electromagnetic field propagation over complex mountainous terrain. The gain in the CPU time can be as high as a factor of 4 to 5, while the accuracy remains unchanged with respect to the conventional FDTD.
引用
收藏
页码:976 / 980
页数:5
相关论文
共 18 条
[1]   Analysis of lightning-ionosphere interaction using simultaneous records of source current and 380 km distant electric field [J].
Azadifar, Mohammad ;
Li, Dongshuai ;
Rachidi, Farhad ;
Rubinstein, Marcos ;
Diendorfer, Gerhard ;
Schulz, Wolfgang ;
Pichler, Hannes ;
Rakov, Vladimir A. ;
Paolone, Mario ;
Pavanello, Davide .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2017, 159 :48-56
[2]   Long range propagation of lightning pulses using the FDTD method [J].
Bérenger, JP .
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2005, 47 (04) :1008-1012
[3]  
Bérenger JP, 2002, ANN TELECOMMUN, V57, P1059
[4]   A technique for efficiently modeling long-path propagation for use in both FDFD and FDTD [J].
Chevalier, Michael W. ;
Inan, Umran S. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2006, 5 :525-528
[5]   Hybrid Ray FDTD moving window approach to pulse propagation [J].
Fidel, B ;
Heyman, E ;
Kastner, R ;
Ziolkowski, RW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 138 (02) :480-500
[6]   Effect of Striking a Cone-Shaped Mountain Top on the Far Lightning-Radiated Electromagnetic Field [J].
Hou, Wenhao ;
Zhang, Qilin ;
Wang, Lei ;
Zhang, Jinbo .
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2019, 61 (04) :1147-1156
[7]  
Hu W., 2007, IEEE T ANTENN PROPAG, V54, P1513
[8]   Location Accuracy Evaluation of ToA-Based Lightning Location Systems Over Mountainous Terrain [J].
Li, Dongshuai ;
Rubinstein, Marcos ;
Rachidi, Farhad ;
Diendorfer, Gerhard ;
Schulz, Wolfgang ;
Lu, Gaopeng .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (21) :11760-11775
[9]  
Luebbers R, 2003, IEEE MILIT COMMUN C, P1397
[10]  
Nucci C. A., 1989, P 8 INT S EL COMP ZU, P389