Thermo-economic and environmental analysis of various low-GWP refrigerants in Organic Rankine cycle system

被引:29
作者
Ye, Zhenhong [1 ]
Yang, Jingye [1 ]
Shi, Junye [1 ]
Chen, Jiangping [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Refrigerat & Cryogen, Shanghai 200240, Peoples R China
关键词
Organic rankine cycle; Working fluid selection; Economic evaluation; Performance assessment; Low GWP; WASTE HEAT-RECOVERY; DROP-IN REPLACEMENT; WORKING FLUIDS; PARAMETERS OPTIMIZATION; ORC; TEMPERATURE; R245FA; EVAPORATION; R1233ZD(E); ENERGY;
D O I
10.1016/j.energy.2020.117344
中图分类号
O414.1 [热力学];
学科分类号
摘要
Among various techniques of utilizing waste heat, ORC is receiving more and more attention for its high efficiency and flexibility. One of the toughest tasks in ORC waste heat recovery system is working fluid selection. The aim of the study is to investigate the effect of physical properties on overall ORC system costs and propose a general method of refrigerant's performance assessment of ORC system. The internal relationship between the enthalpy of vaporization, molecular weight, and molecular complexity, and the impact on investment cost were analyzed theoretically. The analysis and experiment using R12333zd(E), R1234ze(Z) and R1366mzz(E) as well as R245fa explain the internal mechanism of the effect of different working fluids on NPIT, which represents the ratio of the net power output to the total cost. The economic performances of several new environmental-friendly refrigerants are evaluated using the NPIT assessment. The results show that R12333zd(E) has the best performance and its maximal NPIT value is 0.0625, followed by R1234ze(Z), R1366mzz(E) and R245fa. In addition, when R1233zd(E) performs excellently, evaporation and condensation temperature are 127 degrees C and 30 degrees C, respectively. The physical properties of R1233zd(E) and R245fa are extremely close, which makes R1233zd(E) be an alternative refrigerant without redesigning components of ORC system. NPIT is the answer to the challenge of complex boundary conditions and system types with various operational parameters and it could guide the selection of operating condition and design of ORC system equipment. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 34 条
[1]   A comprehensive design methodology of organic Rankine cycles for the waste heat recovery of automotive heavy-duty diesel engines [J].
Amicabile, Simone ;
Lee, Jeong-Ik ;
Kum, Dongsuk .
APPLIED THERMAL ENGINEERING, 2015, 87 :574-585
[2]   A review of working fluid and expander selections for organic Rankine cycle [J].
Bao, Junjiang ;
Zhao, Li .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 24 :325-342
[3]   A Theoretical Comparative Study of CO2 Cascade Refrigeration Systems [J].
Bellos, Evangelos ;
Tzivanidis, Christos .
APPLIED SCIENCES-BASEL, 2019, 9 (04)
[4]   Comparative analysis of natural and synthetic refrigerants in application to low temperature Clausius-Rankine cycle [J].
Borsukiewicz-Gozdur, Aleksandra ;
Nowak, Wladyslaw .
ENERGY, 2007, 32 (04) :344-352
[5]   Modelling and optimisation of solar organic rankine cycle engines for reverse osmosis desalination [J].
Carles Bruno, Joan ;
Lopez-Villada, Jesus ;
Letelier, Eduardo ;
Romera, Silvia ;
Coronas, Alberto .
APPLIED THERMAL ENGINEERING, 2008, 28 (17-18) :2212-2226
[6]   A review of thermodynamic cycles and working fluids for the conversion of low-grade heat [J].
Chen, Huijuan ;
Goswami, D. Yogi ;
Stefanakos, Elias K. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (09) :3059-3067
[7]   Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery [J].
Dai, Yiping ;
Wang, Jiangfeng ;
Gao, Lin .
ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (03) :576-582
[8]   Experimental study of an ORC (Organic Rankine Cycle) and analysis of R1233zd-E as a drop-in replacement for R245fa for low temperature heat utilization [J].
Eyerer, Sebastian ;
Wieland, Christoph ;
Vandersickel, Annelies ;
Spliethoff, Hartmut .
ENERGY, 2016, 103 :660-671
[9]   Assessment of boiling and condensation heat transfer correlations in the modelling of plate heat exchangers [J].
Garcia-Cascales, J. R. ;
Vera-Garcia, F. ;
Corberan-Salvador, J. M. ;
Gonzalvez-Macia, J. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2007, 30 (06) :1029-1041
[10]   Transient performance evaluation of waste heat recovery rankine cycle based system for heavy duty trucks [J].
Grelet, Vincent ;
Reiche, Thomas ;
Lemort, Vincent ;
Nadri, Madiha ;
Dufour, Pascal .
APPLIED ENERGY, 2016, 165 :878-892