Immune modulation by hypofractionated stereotactic radiation therapy: Therapeutic implications

被引:92
作者
Popp, Ilinca [1 ,2 ]
Grosu, Anca Ligia [1 ,2 ]
Niedermann, Gabriele [1 ,2 ]
Duda, Dan G. [3 ,4 ]
机构
[1] Univ Med Ctr Freiburg, Dept Radiat Oncol, Freiburg, Germany
[2] German Canc Consortium DKTK, Partner Site Freiburg, Freiburg, Germany
[3] Massachusetts Gen Hosp, Dept Radiat Oncol, Steele Labs, Boston, MA USA
[4] Harvard Med Sch, Boston, MA USA
关键词
SBRT; SRS; Checkpoint blockade; Abscopal effect; COLONY-STIMULATING FACTOR; MONOCLONAL-ANTIBODY THERAPY; RESISTANT PROSTATE-CANCER; PHASE I/II TRIAL; BODY RADIOTHERAPY; LOCAL RADIATION; TUMOR-CELLS; HEPATOCELLULAR-CARCINOMA; METASTATIC MELANOMA; ANTITUMOR IMMUNITY;
D O I
10.1016/j.radonc.2016.07.013
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Stereotactic body radiation therapy (SBRT) has become an attractive treatment modality and a safe, non-invasive alternative to surgery to control primary or secondary malignant tumors. While emphasis has been on the local tumor control as a treatment objective for SBRT, the rare but intriguing observations of abscopal (or out-of-field) effects have pointed to the exciting possibility of activating anti-tumor immunity by using high-dose radiation. This review summarizes the available evidence supporting immune modulation by SBRT alone, as well as its potential combination with immunotherapy. Promising preclinical research has revealed an array of immune changes following SBRT, which could affect the balance between anti-tumor immunity and tumor-promoting immunosuppression. However, shifting this balance in the clinical setting to obtain survival benefits has rarely been achieved so far, emphasizing the need for a better understanding of the interactions between high-dose radiotherapy and immunity or immunotherapy. Nevertheless, the combination of SBRT with immunotherapy, particularly with immune checkpoint blockers, has the clear potential to substantially increase the rate of abscopal effects. This warrants further research in this area, both in mechanistic preclinical studies and in clinical trials incorporating correlative studies. (C) 2016 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:185 / 194
页数:10
相关论文
共 118 条
[1]   B70 ANTIGEN IS A 2ND LIGAND FOR CTLA-4 AND CD28 [J].
AZUMA, M ;
ITO, D ;
YAGITA, H ;
OKUMURA, K ;
PHILLIPS, JH ;
LANIER, LL ;
SOMOZA, C .
NATURE, 1993, 366 (6450) :76-79
[2]   The tumor microenvironment at a glance [J].
Balkwill, Frances R. ;
Capasso, Melania ;
Hagemann, Thorsten .
JOURNAL OF CELL SCIENCE, 2012, 125 (23) :5591-5596
[3]   Focal Radiation Therapy Combined with 4-1BB Activation and CTLA-4 Blockade Yields Long-Term Survival and a Protective Antigen-Specific Memory Response in a Murine Glioma Model [J].
Belcaid, Zineb ;
Phallen, Jillian A. ;
Zeng, Jing ;
See, Alfred P. ;
Mathios, Dimitrios ;
Gottschalk, Chelsea ;
Nicholas, Sarah ;
Kellett, Meghan ;
Ruzevick, Jacob ;
Jackson, Christopher ;
Albesiano, Emilia ;
Durham, Nicholas M. ;
Ye, Xiaobu ;
Tran, Phuoc T. ;
Tyler, Betty ;
Wong, John W. ;
Brem, Henry ;
Pardoll, Drew M. ;
Drake, Charles G. ;
Lim, Michael .
PLOS ONE, 2014, 9 (07)
[4]   Cross-talk among myeloid-derived suppressor cells, macrophages, and tumor cells impacts the inflammatory milieu of solid tumors [J].
Beury, Daniel W. ;
Parker, Katherine H. ;
Nyandjo, Maeva ;
Sinha, Pratima ;
Carter, Kayla A. ;
Ostrand-Rosenberg, Suzanne .
JOURNAL OF LEUKOCYTE BIOLOGY, 2014, 96 (06) :1109-1118
[5]   Stereotactic body radiotherapy (SBRT) in the management of extracranial oligometastatic (OM) disease [J].
Bhattacharya, I. S. ;
Woolf, D. K. ;
Hughes, R. J. ;
Shah, N. ;
Harrison, M. ;
Ostler, P. J. ;
Hoskin, P. J. .
BRITISH JOURNAL OF RADIOLOGY, 2015, 88 (1048)
[6]   Phase I Study of Single-Agent Anti-Programmed Death-1 (MDX-1106) in Refractory Solid Tumors: Safety, Clinical Activity, Pharmacodynamics, and Immunologic Correlates [J].
Brahmer, Julie R. ;
Drake, Charles G. ;
Wollner, Ira ;
Powderly, John D. ;
Picus, Joel ;
Sharfman, William H. ;
Stankevich, Elizabeth ;
Pons, Alice ;
Salay, Theresa M. ;
McMiller, Tracee L. ;
Gilson, Marta M. ;
Wang, Changyu ;
Selby, Mark ;
Taube, Janis M. ;
Anders, Robert ;
Chen, Lieping ;
Korman, Alan J. ;
Pardoll, Drew M. ;
Lowy, Israel ;
Topalian, Suzanne L. .
JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (19) :3167-3175
[7]   In Situ Vaccination With a TLR9 Agonist Induces Systemic Lymphoma Regression: A Phase I/II Study [J].
Brody, Joshua D. ;
Ai, Weiyun Z. ;
Czerwinski, Debra K. ;
Torchia, James A. ;
Levy, Mia ;
Advani, Ranjana H. ;
Kim, Youn H. ;
Hoppe, Richard T. ;
Knox, Susan J. ;
Shin, Lewis K. ;
Wapnir, Irene ;
Tibshirani, Robert J. ;
Levy, Ronald .
JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (28) :4324-4332
[8]   Molecular analysis of the RET and NTRK1 gene rearrangements in papillary thyroid carcinoma in the Polish population [J].
Brzezianska, Ewa ;
Karbownik, Malgorzata ;
Migdalska-Sek, Monika ;
Pastuszak-Lewandoska, Dorota ;
Wloch, Jan ;
Lewinski, Andrzej .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2006, 599 (1-2) :26-35
[9]   The Efficacy of Radiotherapy Relies upon Induction of Type I Interferon-Dependent Innate and Adaptive Immunity [J].
Burnette, Byron C. ;
Liang, Hua ;
Lee, Youjin ;
Chlewicki, Lukasz ;
Khodarev, Nikolai N. ;
Weichselbaum, Ralph R. ;
Fu, Yang-Xin ;
Auh, Sogyong L. .
CANCER RESEARCH, 2011, 71 (07) :2488-2496
[10]   External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing [J].
Chakraborty, M ;
Abrams, SI ;
Coleman, CN ;
Camphausen, K ;
Schlom, J ;
Hodge, JW .
CANCER RESEARCH, 2004, 64 (12) :4328-4337