Borcherds products with prescribed divisor

被引:6
作者
Bruinier, Jan Hendrik [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, Schlossgartenstr 7, D-64289 Darmstadt, Germany
关键词
EISENSTEIN SERIES; MODULAR-FORMS; INTEGRALS;
D O I
10.1112/blms.12090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an infinite set of special divisors satisfying a mild regularity condition, we prove the existence of a Borcherds product of non-zero weight whose divisor is supported on these special divisors. We also show that every meromorphic Borcherds product is the quotient of two holomorphic ones. The proofs of both results rely on the properties of vector valued Eisenstein series for the Weil representation.
引用
收藏
页码:979 / 987
页数:9
相关论文
共 15 条
[1]  
Andreatta M. F., 2015, ARXIV150800178
[2]  
Borcherds R., 1999, DUKE MATH J, V105, P183
[3]   Automorphic forms with singularities on Grassmannians [J].
Borcherds, RE .
INVENTIONES MATHEMATICAE, 1998, 132 (03) :491-562
[4]   The Gross-Kohnen-Zagier theorem in higher dimensions [J].
Borcherds, RE .
DUKE MATHEMATICAL JOURNAL, 1999, 97 (02) :219-233
[5]   Borcherds products and arithmetic intersection theory on Hilbert modular surfaces [J].
Bruinier, Jan H. ;
Burgos Gil, Jose I. ;
Kuehn, Ulf .
DUKE MATHEMATICAL JOURNAL, 2007, 139 (01) :1-88
[6]  
Bruinier JH, 2015, INVENT MATH, V201, P1, DOI 10.1007/s00222-014-0545-9
[7]   On two geometric theta lifts [J].
Bruinier, JH ;
Funke, J .
DUKE MATHEMATICAL JOURNAL, 2004, 125 (01) :45-90
[8]   Eisenstein series attached to lattices and modular forms on orthogonal groups [J].
Bruinier, JH ;
Kuss, M .
MANUSCRIPTA MATHEMATICA, 2001, 106 (04) :443-459
[9]   Integrals of automorphic Green's functions associated to Heegner divisors [J].
Bruinier, JH ;
Kühn, U .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2003, 2003 (31) :1687-1729
[10]  
Bruinier JH, 2002, SPRINGER LECT NOTES, V1780