Machine-Learning Analysis of Small-Molecule Donors for Fullerene Based Organic Solar Cells

被引:69
作者
Janjua, Muhammad Ramzan Saeed Ashraf [1 ]
Irfan, Ahmad [2 ,3 ]
Hussien, Mohamed [3 ,4 ]
Ali, Muhammad [5 ]
Saqib, Muhammad [6 ]
Sulaman, Muhammad [7 ,8 ]
机构
[1] King Fahd Univ Petr & Minerals, Chem Dept, Dhahran 31261, Saudi Arabia
[2] King Khalid Univ, Res Ctr Adv Mat Sci RCAMS, Abha 61413, Saudi Arabia
[3] King Khalid Univ, Dept Chem, Coll Sci, Abha 61413, Saudi Arabia
[4] Agr Res Ctr, Cent Agr Pesticide Lab, Pesticide Formulat Dept, Giza 12618, Egypt
[5] Univ Sargodha, Dept Chem, Sargodha 40100, Pakistan
[6] Khwaja Fareed Univ Engn & Informat Technol, Dept Chem, Rahim Yar Khan 64200, Pakistan
[7] Beijing Inst Technol, Beijing Key Lab Nanophoton & Ultrafine Optoelect, Ctr Micronanotechnol, Sch Phys, Beijing 100081, Peoples R China
[8] Beijing Inst Technol, Key Lab OfAdv Optoelect Quantum Design & Measurem, Minist Educ, Sch Phys, Beijing 100081, Peoples R China
关键词
machine learning; organic solar cells; random forest; small-molecule donors; support vector machine; ACCEPTOR; PERFORMANCE; EFFICIENCY; IMPROVE; VOLTAGE; DYES;
D O I
10.1002/ente.202200019
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In recent years, development in organic solar cells speeds up and performance continuously increases. From the last few years, machine learning gains fame among scientists who are researching on organic solar cells. Herein, machine learning is used to screen the small-molecule donors for organic solar cells. Molecular descriptors are used as input to train machine models. A variety of machine-learning models are tested to find the suitable one. Random forest model shows best predictive capability (Pearson's coefficient = 0.93). New small-molecule donors are also designed from easily synthesizable building units. Their power conversion efficiencies (PCEs) are predicted. Potential candidates with PCE > 11% are selected. The approach presented herein helps to select the efficient materials in short time with ease.
引用
收藏
页数:6
相关论文
共 50 条
[1]   Designing benzothiadiazole based highly efficient non-fullerene acceptor molecules for organic solar cells [J].
Afzal, Qaba Qusain ;
Jaffar, Kinza ;
Ans, Muhammad ;
Rafique, Javeria ;
Iqbal, Javed ;
Shehzad, Rao Aqil ;
Mahr, Muhammad Shabir .
POLYMER, 2022, 238
[2]   Machine learning-integrated omics for the risk and safety assessment of nanomaterials [J].
Ahmad, Farooq ;
Mahmood, Asif ;
Muhmood, Tahir .
BIOMATERIALS SCIENCE, 2021, 9 (05) :1598-1608
[3]   Designing alkoxy-induced based high performance near infrared sensitive small molecule acceptors for organic solar cells [J].
Ans, Muhammad ;
Paramasivam, Mahalingavelar ;
Ayub, Khurshid ;
Ludwig, Ralf ;
Zahid, Muhammad ;
Xiao, Xiudi ;
Iqbal, Javed .
JOURNAL OF MOLECULAR LIQUIDS, 2020, 305
[4]   Designing dithienonaphthalene based acceptor materials with promising photovoltaic parameters for organic solar cells [J].
Ans, Muhammad ;
Iqbal, Javed ;
Bhatti, Ijaz Ahmad ;
Ayub, Khurshid .
RSC ADVANCES, 2019, 9 (59) :34496-34505
[5]   Development of fullerene free acceptors molecules for organic solar cells: A step way forward toward efficient organic solar cells [J].
Ans, Muhammad ;
Ayub, Khurshid ;
Muhammad, Shabbir ;
Iqbal, Javed .
COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2019, 1161 :26-38
[6]   Designing dithienothiophene (DTT)-based donor materials with efficient photovoltaic parameters for organic solar cells [J].
Ans, Muhammad ;
Manzoor, Farah ;
Ayub, Khurshid ;
Nawaz, Faisal ;
Iqbal, Javed .
JOURNAL OF MOLECULAR MODELING, 2019, 25 (08)
[7]   Designing of non-fullerene 3D star-shaped acceptors for organic solar cells [J].
Ans, Muhammad ;
Iqbal, Javed ;
Eliasson, Bertil ;
Saif, Muhammad Jawwad ;
Javed, Hafiz Muhammad Asif ;
Ayub, Khurshid .
JOURNAL OF MOLECULAR MODELING, 2019, 25 (05)
[8]   KNIME:: The Konstanz Information Miner [J].
Berthold, Michael R. ;
Cebron, Nicolas ;
Dill, Fabian ;
Gabriel, Thomas R. ;
Koetter, Tobias ;
Meinl, Thorsten ;
Ohl, Peter ;
Sieb, Christoph ;
Thiel, Kilian ;
Wiswedel, Bernd .
DATA ANALYSIS, MACHINE LEARNING AND APPLICATIONS, 2008, :319-326
[9]   A visible-near-infrared absorbing A-π2-D-π1-D-π2-A type dimeric-porphyrin donor for high-performance organic solar cells [J].
Chen, Song ;
Yan, Lei ;
Xiao, Liangang ;
Gao, Ke ;
Tang, Wei ;
Wang, Cheng ;
Zhu, Chenhui ;
Wang, Xingzhu ;
Liu, Feng ;
Peng, Xiaobin ;
Wong, Wai-Kwok ;
Zhu, Xunjin .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (48) :25460-25468
[10]   Solution-processed new porphyrin-based small molecules as electron donors for highly efficient organic photovoltaics [J].
Chen, Song ;
Xiao, Liangang ;
Zhu, Xunjin ;
Peng, Xiaobing ;
Wong, Wai-Kwok ;
Wong, Wai-Yeung .
CHEMICAL COMMUNICATIONS, 2015, 51 (77) :14439-14442