HLTF Promotes Fork Reversal, Limiting Replication Stress Resistance and Preventing Multiple Mechanisms of Unrestrained DNA Synthesis

被引:121
作者
Bai, Gongshi [1 ]
Kermi, Chames [1 ]
Stoy, Henriette [2 ]
Schiltz, Carl J. [3 ,4 ]
Bacal, Julien [1 ]
Zaino, Angela M. [5 ]
Hadden, M. Kyle [5 ]
Eichman, Brandt F. [3 ,4 ]
Lopes, Massimo [2 ]
Cimprich, Karlene A. [1 ]
机构
[1] Stanford Univ, Sch Med, Dept Chem & Syst Biol, 318 Campus Dr, Stanford, CA 94305 USA
[2] Univ Zurich, Inst Mol Canc Res, Zurich, Switzerland
[3] Vanderbilt Univ, Dept Biol Sci, Nashville, TN 37232 USA
[4] Vanderbilt Univ, Ctr Struct Biol, Nashville, TN 37232 USA
[5] Univ Connecticut, Dept Pharmaceut Sci, 69 North Eagleville Rd, Storrs, CT 06029 USA
基金
瑞士国家科学基金会;
关键词
TRANSCRIPTION FACTOR HLTF; SINGLE-STRANDED-DNA; TRANSLESION SYNTHESIS; POLYMERASE-ZETA; NASCENT DNA; PRIMPOL; DAMAGE; DOMAIN; PROTEIN; ZRANB3;
D O I
10.1016/j.molcel.2020.04.031
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DNA replication stress can stall replication forks, leading to genome instability. DNA damage tolerance pathways assist fork progression, promoting replication fork reversal, translesion DNA synthesis (TLS), and repriming. In the absence of the fork remodeler HLTF, forks fail to slow following replication stress, but underlying mechanisms and cellular consequences remain elusive. Here, we demonstrate that HLTF-deficient cells fail to undergo fork reversal in vivo and rely on the primase-polymerase PRIMPOL for repriming, unrestrained replication, and S phase progression upon limiting nucleotide levels. By contrast, in an HLTF-HIRAN mutant, unrestrained replication relies on the TLS protein REV1. Importantly, HLTF-deficient cells also exhibit reduced double-strand break (DSB) formation and increased survival upon replication stress. Our findings suggest that HLTF promotes fork remodeling, preventing other mechanisms of replication stress tolerance in cancer cells. This remarkable plasticity of the replication fork may determine the outcome of replication stress in terms of genome integrity, tumorigenesis, and response to chemotherapy.
引用
收藏
页码:1237 / +
页数:22
相关论文
共 81 条
  • [1] Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling
    Achar, Yathish Jagadheesh
    Balogh, David
    Neculai, Dante
    Juhasz, Szilvia
    Morocz, Monika
    Gali, Himabindu
    Dhe-Paganon, Sirano
    Venclovas, Ceslovas
    Haracska, Lajos
    [J]. NUCLEIC ACIDS RESEARCH, 2015, 43 (21) : 10277 - 10291
  • [2] Coordinated protein and DNA remodeling by human HLTF on stalled replication fork
    Achar, Yathish Jagadheesh
    Balogh, David
    Haracska, Lajos
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (34) : 14073 - 14078
  • [3] The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks
    Bansbach, Carol E.
    Betous, Remy
    Lovejoy, Courtney A.
    Glick, Gloria G.
    Cortez, David
    [J]. GENES & DEVELOPMENT, 2009, 23 (20) : 2405 - 2414
  • [4] Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation
    Belen Vallerga, Maria
    Mansilla, Sabrina F.
    Belen Federico, Maria
    Bertolin, Agustina P.
    Gottifredi, Vanesa
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (48) : E6624 - E6633
  • [5] SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication
    Betous, Remy
    Mason, Aaron C.
    Rambo, Robert P.
    Bansbach, Carol E.
    Badu-Nkansah, Akosua
    Sirbu, Bianca M.
    Eichman, Brandt F.
    Cortez, David
    [J]. GENES & DEVELOPMENT, 2012, 26 (02) : 151 - 162
  • [6] PrimPol Bypasses UV Photoproducts during Eukaryotic Chromosomal DNA Replication
    Bianchi, Julie
    Rudd, Sean G.
    Jozwiakowski, Stanislaw K.
    Bailey, Laura J.
    Soura, Violetta
    Taylor, Elaine
    Stevanovic, Irena
    Green, Andrew J.
    Stracker, Travis H.
    Lindsay, Howard D.
    Doherty, Aidan J.
    [J]. MOLECULAR CELL, 2013, 52 (04) : 566 - 573
  • [7] Role of Double-Stranded DNA Translocase Activity of Human HLTF in Replication of Damaged DNA
    Blastyak, Andras
    Hajdu, Ildiko
    Unk, Ildiko
    Haracska, Lajos
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2010, 30 (03) : 684 - 693
  • [8] Building up and breaking down: mechanisms controlling recombination during replication
    Branzei, Dana
    Szakal, Barnabas
    [J]. CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2017, 52 (04) : 381 - 394
  • [9] A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination
    Brzovic, PS
    Lissounov, A
    Christensen, DE
    Hoyt, DW
    Klevit, RE
    [J]. MOLECULAR CELL, 2006, 21 (06) : 873 - 880
  • [10] Molecular Insights into the Function of RING Finger (RNF)-containing Proteins hRNF8 and hRNF168 in Ubc13/Mms2-dependent Ubiquitylation
    Campbell, Stephen J.
    Edwards, Ross A.
    Leung, Charles C. Y.
    Neculai, Dante
    Hodge, Curtis D.
    Dhe-Paganon, Sirano
    Glover, J. N. Mark
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (28) : 23900 - 23910