Homogenization of 2D Cahn-Hilliard-Navier-Stokes system

被引:7
|
作者
Bunoiu, R. [1 ]
Cardone, G. [2 ]
Kengne, R. [3 ]
Woukeng, J. L. [3 ]
机构
[1] Univ Lorraine, IECL, CNRS, UMR 7502, 3 Rue Augustin Fresnel, F-57073 Metz, France
[2] Univ Sannio, Dept Engn, Corso Garibaldi 107, I-84100 Benevento, Italy
[3] Univ Dschang, Dept Math & Comp Sci, POB 67, Dschang, Cameroon
关键词
Cahn-Hilliard-Navier-Stokes system; Sigma-convergence; Homogenization; Variable viscosity; 2-SCALE CONVERGENCE; ASYMPTOTIC-BEHAVIOR; ALGEBRAS; FLOW; FILTRATION; EQUATIONS; DOMAINS;
D O I
10.1007/s41808-020-00074-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the current work, we are performing the asymptotic analysis, beyond the periodic setting, of the Cahn-Hilliard-Navier-Stokes system. Under the general deterministic distribution assumption on the microstructures in the domain, we find the limit model equivalent to the heterogeneous one. To this end, we use the sigma-convergence concept which is suitable for the passage to the limit.
引用
收藏
页码:377 / 408
页数:32
相关论文
共 50 条
  • [31] Stability and Error Analysis of SAV Semi-Discrete Scheme for Cahn-Hilliard-Navier-Stokes Model
    Gao, Haijun
    Li, Xi
    Feng, Minfu
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2024,
  • [32] Homogenization problems for the compressible Navier-Stokes system in 2D perforated domains
    Necasova, Sarka
    Pan, Jiaojiao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (12) : 7859 - 7873
  • [33] Weak solution of a stochastic 3D nonlocal Cahn-Hilliard-Navier-Stokes systems with shear-dependent viscosity
    Ngana, Aristide Ndongmo
    Deugoue, Gabriel
    Medjo, Ttheodore Tachim
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2023, 95 (04) : 521 - 580
  • [34] Preconditioning of a Coupled Cahn-Hilliard Navier-Stokes System
    Bosch, Jessica
    Kahle, Christian
    Stoll, Martin
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 23 (02) : 603 - 628
  • [35] FINITE DIMENSIONAL GLOBAL ATTRACTOR OF THE CAHN-HILLIARD-NAVIER STOKES SYSTEM WITH DYNAMIC BOUNDARY CONDITIONS
    You, Bo
    Li, Fang
    Zhang, Chang
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (01) : 53 - 76
  • [36] Convergence analysis of a decoupled pressure-correction SAV-FEM for the Cahn-Hilliard-Navier-Stokes model
    Yang, Jinting
    Yi, Nianyu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 449
  • [37] Homogenization of a coupled incompressible Stokes-Cahn-Hilliard system modeling binary fluid mixture in a porous medium
    Lakhmara, Nitu
    Mahato, Hari Shankar
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 222
  • [38] On an incompressible Navier-Stokes/Cahn-Hilliard system with degenerate mobility
    Abels, Helmut
    Depner, Daniel
    Garcke, Harald
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (06): : 1175 - 1190
  • [39] ROBUST EXPONENTIAL ATTRACTORS FOR THE CAHN-HILLIARD-OONO-NAVIER-STOKES SYSTEM
    Nimi, Aymard Christbert
    Langa, Franck Davhys Reval
    Bissouesse, Aurdeli Juves Primpha
    Moukoko, Daniel
    Batchi, Macaire
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (09): : 2426 - 2451
  • [40] Asymptotic behavior of higher-order Navier-Stokes-Cahn-Hilliard systems
    Cherfils, Laurence
    Gatti, Stefania
    Miranville, Alain
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (12) : 4776 - 4794