Homogenization of 2D Cahn-Hilliard-Navier-Stokes system

被引:7
|
作者
Bunoiu, R. [1 ]
Cardone, G. [2 ]
Kengne, R. [3 ]
Woukeng, J. L. [3 ]
机构
[1] Univ Lorraine, IECL, CNRS, UMR 7502, 3 Rue Augustin Fresnel, F-57073 Metz, France
[2] Univ Sannio, Dept Engn, Corso Garibaldi 107, I-84100 Benevento, Italy
[3] Univ Dschang, Dept Math & Comp Sci, POB 67, Dschang, Cameroon
关键词
Cahn-Hilliard-Navier-Stokes system; Sigma-convergence; Homogenization; Variable viscosity; 2-SCALE CONVERGENCE; ASYMPTOTIC-BEHAVIOR; ALGEBRAS; FLOW; FILTRATION; EQUATIONS; DOMAINS;
D O I
10.1007/s41808-020-00074-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the current work, we are performing the asymptotic analysis, beyond the periodic setting, of the Cahn-Hilliard-Navier-Stokes system. Under the general deterministic distribution assumption on the microstructures in the domain, we find the limit model equivalent to the heterogeneous one. To this end, we use the sigma-convergence concept which is suitable for the passage to the limit.
引用
收藏
页码:377 / 408
页数:32
相关论文
共 50 条
  • [21] The role of BKM-type theorems in 3D Euler, Navier-Stokes and Cahn-Hilliard-Navier-Stokes analysis
    Gibbon, John D.
    Gupta, Anupam
    Pal, Nairita
    Pandit, Rahul
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 376 : 60 - 68
  • [22] An efficient numerical algorithm for solving viscosity contrast Cahn-Hilliard-Navier-Stokes system in porous media
    Liu, Chen
    Frank, Florian
    Thiele, Christopher
    Alpak, Faruk O.
    Berg, Steffen
    Chapman, Walter
    Riviere, Beatrice
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 400
  • [23] A Second Order Numerical Scheme of the Cahn-Hilliard-Navier-Stokes System with Flory-Huggins Potential
    Chen, Wenbin
    Jing, Jianyu
    Liu, Qianqian
    Wang, Cheng
    Wang, Xiaoming
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2024, 35 (03) : 633 - 661
  • [24] ATTRACTORS FOR THE NAVIER-STOKES-CAHN-HILLIARD SYSTEM
    Giorgini, Andrea
    Temam, Roger
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (08): : 2249 - 2274
  • [25] A Comparison of Cahn-Hilliard and Navier-Stokes-Cahn-Hilliard Models on Manifolds
    Olshanskii, Maxim
    Palzhanov, Yerbol
    Quaini, Annalisa
    VIETNAM JOURNAL OF MATHEMATICS, 2022, 50 (04) : 929 - 945
  • [26] Global well-posedness of a Navier-Stokes-Cahn-Hilliard system with chemotaxis and singular potential in 2D
    He, Jingning
    Wu, Hao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 297 : 47 - 80
  • [27] Analysis and numerical simulation of a generalized compressible Cahn-Hilliard-Navier-Stokes model with friction effects
    Elbar, Charles
    Poulain, Alexandre
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2024, 58 (05) : 1989 - 2034
  • [28] Instability of two-phase flows: A lower bound on the dimension of the global attractor of the Cahn-Hilliard-Navier-Stokes system
    Gal, Ciprian G.
    Grasselli, Maurizio
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (07) : 629 - 635
  • [29] OPTIMAL L\bftwo ERROR ESTIMATES OF UNCONDITIONALLY STABLE FINITE ELEMENT SCHEMES FOR THE CAHN-HILLIARD-NAVIER-STOKES SYSTEM
    Cai, Wentao
    Sun, Weiwei
    Wang, Jilu
    Yang, Zongze
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (03) : 1218 - 1245
  • [30] Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system
    Diegel, Amanda E.
    Wang, Cheng
    Wang, Xiaoming
    Wise, Steven M.
    NUMERISCHE MATHEMATIK, 2017, 137 (03) : 495 - 534