A reaction-diffusion model of forest boundary with seed dynamics

被引:0
|
作者
Rajasingh, J. [1 ]
Murugesu, R. [2 ]
Shabudeen, P. Syed [3 ]
机构
[1] Kumaraguru Coll Technol, Dept Math, Coimbatore 641006, Tamil Nadu, India
[2] Sri Ramakrishna Mission Vidyalya Coll Arts & Sci, Dept Math, Coimbatore 641020, Tamil Nadu, India
[3] Kumaraguru Coll Technol, Dept Environm Sci & Chem, Coimbatore 641006, Tamil Nadu, India
关键词
Forest boundary dynamics; age-structured forest model; homotopy perturbation method; HOMOTOPY-PERTURBATION METHOD; KINEMATIC MODEL; EQUATIONS;
D O I
10.1142/S1793524515500333
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The density of forest cover based upon reaction-diffusion model for mono-species of two age classes with seed dynamics is to be attempted. The prevailing densities of young, old species and airborne seedlings are resolved by homotopy perturbation method which is applied in reaction-diffusion model. This model is utilized to verify the effect of the density of forest cover with the following variables namely seed reproduction, seed deposition, seed establishment rates, coefficients of aging of old tree and coefficients of mortality on the space variable.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] The dynamics of boundary spikes for a nonlocal reaction-diffusion model
    Iron, D
    Ward, MJ
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2000, 11 : 491 - 514
  • [2] Dynamics for a Nonlocal Reaction-Diffusion Population Model with a Free Boundary
    Zhao, Yaling
    Liu, Zuhan
    Zhou, Ling
    ACTA APPLICANDAE MATHEMATICAE, 2019, 159 (01) : 139 - 168
  • [3] Dynamics for a Nonlocal Reaction-Diffusion Population Model with a Free Boundary
    Yaling Zhao
    Zuhan Liu
    Ling Zhou
    Acta Applicandae Mathematicae, 2019, 159 : 139 - 168
  • [4] Dynamics of a reaction-diffusion SIRI model with relapse and free boundary
    Ding, Qian
    Liu, Yunfeng
    Chen, Yuming
    Guo, Zhiming
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (02) : 1659 - 1676
  • [5] Boundary effects on the dynamics of monostable reaction-diffusion systems
    Von, Haeften, B.
    Izus, G.
    Deza, R.
    Borzi, C.
    Physics Letters. Section A: General, Atomic and Solid State Physics, 236 (5-6):
  • [6] Boundary effects on the dynamics of monostable reaction-diffusion systems
    von Haeften, B
    Izus, G
    Deza, R
    Borzi, C
    PHYSICS LETTERS A, 1997, 236 (5-6) : 403 - 408
  • [7] The effect of protection zone on asymptotic dynamics of a reaction-diffusion model with a free boundary or unbounded boundary
    Li, Jingjing
    Sun, Ningkui
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 68
  • [8] Global dynamics of a reaction-diffusion malaria model
    Xin, Ming-Zhen
    Wang, Bin-Guo
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 61
  • [9] On the dynamics of a nonlinear reaction-diffusion duopoly model
    Rionero, Salvatore
    Torcicollo, Isabella
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 99 : 105 - 111
  • [10] On the nonlinear dynamics of an ecoepidemic reaction-diffusion model
    Capone, Florinda
    De Luca, Roberta
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2017, 95 : 307 - 314