A new approach to the Boussinesq hierarchy

被引:61
作者
Dickson, R [1 ]
Gesztesy, F
Unterkofler, K
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Graz Tech Univ, Inst Theoret Phys, A-8010 Graz, Austria
关键词
Boussinesq hierarchy; algebro-geometric solutions; trace formulas; Dubrovin type equations;
D O I
10.1002/mana.19991980105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Mie develop a new systematic approach to the Boussinesq (Bsq) hierarchy based on elementary algebraic methods. In particular, we recursively construct Lax pairs for the Bsq hierarchy by introducing a Fundamental polynomial formalism and establish the basic algebro -- geometric setting including associated Burchnall-Chaundy curves, Baker-Akhiezer functions, trace formulas, and Dubrovin-type equations for Dirichlet and Neumann divisors.
引用
收藏
页码:51 / 108
页数:58
相关论文
共 56 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
ADLER M, 1979, INVENT MATH, V50, P219
[3]   SOLUTIONS OF THE BOUSSINESQ EQUATION [J].
AIRAULT, H .
PHYSICA D, 1986, 21 (01) :171-176
[4]   RATIONAL AND ELLIPTIC SOLUTIONS OF KORTEWEG DE-VRIES EQUATION AND A RELATED MANY-BODY PROBLEM [J].
AIRAULT, H ;
MCKEAN, HP ;
MOSER, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (01) :95-148
[5]   INVESTIGATION OF EQUATIONS OF KORTEWEG-DEVRIES TYPE BY THE METHOD OF RECURRENCE RELATIONS [J].
ALBER, SI .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1979, 19 (JUN) :467-480
[7]  
[Anonymous], OPERATOR THEORY ADV
[8]  
[Anonymous], 1991, SOLITON EQUATIONS HA
[9]  
Beals R., 1988, DIRECT INVERSE SCATT
[10]   GLOBAL EXISTENCE OF SMOOTH SOLUTIONS AND STABILITY OF SOLITARY WAVES FOR A GENERALIZED BOUSSINESQ EQUATION [J].
BONA, JL ;
SACHS, RL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (01) :15-29