Nonlinear fractional differential equations in nonreflexive Banach spaces and fractional calculus

被引:8
作者
Agarwal, Ravi P. [1 ,2 ]
Lupulescu, Vasile [3 ]
O'Regan, Donal [2 ,4 ]
Rahman, Ghaus Ur [5 ]
机构
[1] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
[2] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
[3] Constantin Brancusi Univ, Targu Jiu 210152, Romania
[4] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
[5] Univ Swat, Dept Math & Stat, Khyber Paukhtunkhwa, Pakistan
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2015年
关键词
WEAK SOLUTIONS; INTEGRAL-EQUATION; KNESERS THEOREM; EXISTENCE;
D O I
10.1186/s13662-015-0451-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to correct some ambiguities and inaccuracies in Agarwal et al. (Commun. Nonlinear Sci. Numer. Simul. 20(1): 59-73, 2015; Adv. Differ. Equ. 2013: 302, 2013, doi:10.1186/1687-1847-2013-302) and to present new ideas and approaches for fractional calculus and fractional differential equations in nonreflexive Banach spaces.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Application of measure of noncompactness to a Cauchy problem for fractional differential equations in Banach spaces
    Aghajani, Asadollah
    Pourhadi, Ehsan
    Trujillo, Juan J.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (04) : 962 - 977
  • [42] Impulsive differential equations involving general conformable fractional derivative in Banach spaces
    Liang, Jin
    Mu, Yunyi
    Xiao, Ti-Jun
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
  • [43] Attractivity for fractional differential equations in Banach space
    Zhou, Yong
    APPLIED MATHEMATICS LETTERS, 2018, 75 : 1 - 6
  • [44] Nonlinear fractional integro-differential equations on unbounded domains in a Banach space
    Zhang, Lihong
    Ahmad, Bashir
    Wang, Guotao
    Agarwal, Ravi P.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 249 : 51 - 56
  • [45] Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces
    Wang, JinRong
    Ibrahim, Ahmed Gamal
    Feckan, Michal
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 103 - 118
  • [46] Weighted pseudo antiperiodic solutions for fractional integro-differential equations in Banach spaces
    Alvarez, Edgardo
    Lizama, Carlos
    Ponce, Rodrigo
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 164 - 172
  • [47] Sequential Caputo-Hadamard Fractional Differential Equations with Boundary Conditions in Banach Spaces
    Arul, Ramasamy
    Karthikeyan, Panjayan
    Karthikeyan, Kulandhaivel
    Alruwaily, Ymnah
    Almaghamsi, Lamya
    El-hady, El-sayed
    FRACTAL AND FRACTIONAL, 2022, 6 (12)
  • [48] Proportional Caputo Fractional Differential Inclusions in Banach Spaces
    Rahmani, Abdelkader
    Du, Wei-Shih
    Khalladi, Mohammed Taha
    Kostic, Marko
    Velinov, Daniel
    SYMMETRY-BASEL, 2022, 14 (09):
  • [49] ON SEMILINEAR FRACTIONAL ORDER DIFFERENTIAL INCLUSIONS IN BANACH SPACES
    Kamenskii, Mikhail
    Obukhovskii, Valeri
    Petrosyan, Garik
    Yao, Jen-Chih
    FIXED POINT THEORY, 2017, 18 (01): : 269 - 291
  • [50] Analysis of nonlinear fractional control systems in Banach spaces
    Wang, JinRong
    Zhou, Yong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 5929 - 5942