Nonlinear fractional differential equations in nonreflexive Banach spaces and fractional calculus

被引:8
作者
Agarwal, Ravi P. [1 ,2 ]
Lupulescu, Vasile [3 ]
O'Regan, Donal [2 ,4 ]
Rahman, Ghaus Ur [5 ]
机构
[1] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
[2] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
[3] Constantin Brancusi Univ, Targu Jiu 210152, Romania
[4] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
[5] Univ Swat, Dept Math & Stat, Khyber Paukhtunkhwa, Pakistan
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2015年
关键词
WEAK SOLUTIONS; INTEGRAL-EQUATION; KNESERS THEOREM; EXISTENCE;
D O I
10.1186/s13662-015-0451-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to correct some ambiguities and inaccuracies in Agarwal et al. (Commun. Nonlinear Sci. Numer. Simul. 20(1): 59-73, 2015; Adv. Differ. Equ. 2013: 302, 2013, doi:10.1186/1687-1847-2013-302) and to present new ideas and approaches for fractional calculus and fractional differential equations in nonreflexive Banach spaces.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] SOME RESULTS OF THE NONLINEAR HYBRID FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH ALGEBRA
    Awad, Yahia
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (01): : 27 - 48
  • [32] A New Class of Coupled Systems of Nonlinear Hyperbolic Partial Fractional Differential Equations in Generalized Banach Spaces Involving the ψ-Caputo Fractional Derivative
    Baitiche, Zidane
    Derbazi, Choukri
    Benchohra, Mouffak
    Zhou, Yong
    SYMMETRY-BASEL, 2021, 13 (12):
  • [33] Nonlinear Sequential Fractional Differential Equations in Partially Ordered Spaces
    Fazli, Hossein
    Nieto, Juan J.
    FILOMAT, 2018, 32 (13) : 4577 - 4586
  • [34] KRASNOSELSKII TYPE THEOREMS IN PRODUCT BANACH SPACES AND APPLICATIONS TO SYSTEMS OF NONLINEAR TRANSPORT EQUATIONS AND MIXED FRACTIONAL DIFFERENTIAL EQUATIONS
    Amor, Sana Hadj
    Precup, Radu
    Traiki, Abdelhak
    FIXED POINT THEORY, 2022, 23 (01): : 105 - 126
  • [35] BOUNDARY VALUE PROBLEM FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS IN BANACH SPACES
    Hamani, Samira
    Henderson, Johnny
    Nieto, Juan J.
    FIXED POINT THEORY, 2017, 18 (02): : 591 - 599
  • [36] Controllability of Impulsive Fractional Functional Integro-Differential Equations in Banach Spaces
    Ravichandran, C.
    Trujillo, J. J.
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [37] Impulsive Fractional Differential Equations with p-Laplacian Operator in Banach Spaces
    Tan, Jingjing
    Zhang, Kemei
    Li, Meixia
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [38] Solutions of fractional differential equations with p-Laplacian operator in Banach spaces
    Tan, Jingjing
    Li, Meixia
    BOUNDARY VALUE PROBLEMS, 2018,
  • [39] Solvability of boundary value problems for impulsive fractional differential equations in Banach spaces
    Li, Fang
    Wang, Huiwen
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [40] Decay integral solutions for a class of impulsive fractional differential equations in Banach spaces
    Tran Dinh Ke
    Do Lan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (01) : 96 - 121