On the class number divisibility of pairs of imaginary quadratic fields

被引:15
作者
Iizuka, Yoshichika [1 ]
机构
[1] Gakushuin Univ, Dept Math, Toshima Ku, Tokyo 1718588, Japan
关键词
Class numbers; Quadratic fields;
D O I
10.1016/j.jnt.2017.08.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an infinite family of pairs of imaginary quadratic fields Q(root D) and Q(root D + 1) with D is an element of Z whose class numbers are both divisible by 3. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:122 / 127
页数:6
相关论文
共 8 条
[1]  
Frohlich A., 1983, Contemporary Mathematics, V24
[2]  
Iizuka Y., APPL ARITHMETIC ELLI
[3]   On the class number divisibility of pairs of quadratic fields obtained from points on elliptic curves [J].
Iizuka, Yoshichika ;
Konomi, Yutaka ;
Nakano, Shin .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2016, 68 (02) :899-915
[4]   Parametrization of the quadratic fields whose class numbers are divisible by three [J].
Kishi, Y ;
Miyake, K .
JOURNAL OF NUMBER THEORY, 2000, 80 (02) :209-217
[5]   An infinite family of pairs of quadratic fields Q(√D) and Q(√mD) whose class numbers are both divisible by 3 [J].
Komatsu, T .
ACTA ARITHMETICA, 2002, 104 (02) :129-136
[6]   An infinite family of pairs of imaginary quadratic fields with ideal classes of a given order [J].
Komatsu, Toru .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (02) :253-260
[7]   EFFECTIVE DETERMINATION OF THE DECOMPOSITION OF THE RATIONAL PRIMES IN A CUBIC FIELD [J].
LLORENTE, P ;
NART, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 87 (04) :579-585
[8]  
Scholz A, 1932, J REINE ANGEW MATH, V166, P201