New soliton solutions for Sasa-Satsuma equation

被引:25
作者
Demiray, Seyma Tuluce [1 ]
Pandir, Yusuf [2 ]
Bulut, Hasan [1 ]
机构
[1] Firat Univ, Dept Math, TR-23119 Elazig, Turkey
[2] Bozok Univ, Dept Math, TR-66100 Yozgat, Turkey
关键词
CONSERVATION-LAWS; ROGUE WAVES;
D O I
10.1080/17455030.2015.1042945
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we survey exact solutions of Sasa-Satsuma equation (SSE). We utilize extended trial equation method (ETEM) and generalized Kudryashov method to acquire exact solutions of SSE. First of all, we gain some exact solutions such as soliton solutions, rational, Jacobi elliptic, and hyperbolic function solutions of SSE by means of ETEM. Furthermore, we procure dark soliton solution of this equation by the help of generalized Kudryashov method. Lastly, for certain parameter values, we draw two- and three-dimensional graphics of imaginary and real values of some exact solutions that we achieved using these methods.
引用
收藏
页码:417 / 428
页数:12
相关论文
共 36 条
[1]   Rogue wave spectra of the Sasa-Satsuma equation [J].
Akhmediev, N. ;
Soto-Crespo, J. M. ;
Devine, N. ;
Hoffmann, N. P. .
PHYSICA D-NONLINEAR PHENOMENA, 2015, 294 :37-42
[2]   Rogue waves in optical fibers in presence of third-order dispersion, self-steepening, and self-frequency shift [J].
Ankiewicz, Adrian ;
Soto-Crespo, Jose M. ;
Chowdhury, M. Amdadul ;
Akhmediev, Nail .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2013, 30 (01) :87-94
[3]  
[Anonymous], 2013, LIFE SCI J
[4]  
[Anonymous], 2013, P ROY SOC A-MATH PHY, DOI DOI 10.1098/RSPA.2013.0068
[5]  
[Anonymous], CHIN PHYS LETT
[6]   Sasa-Satsuma equation: Soliton on a background and its limiting cases [J].
Bandelow, U. ;
Akhmediev, N. .
PHYSICAL REVIEW E, 2012, 86 (02)
[7]   Persistence of rogue waves in extended nonlinear Schrodinger equations: Integrable Sasa-Satsuma case [J].
Bandelow, U. ;
Akhmediev, N. .
PHYSICS LETTERS A, 2012, 376 (18) :1558-1561
[8]  
Bulut H., 2014, Int. J. Model. Optim, V4, P315, DOI [10.7763/IJMO.2014.V4.392, DOI 10.7763/IJMO.2014.V4.392]
[9]   Exact solutions of nonlinear Schrodinger's equation with dual power-law nonlinearity by extended trial equation method [J].
Bulut, Hasan ;
Pandir, Yusuf ;
Demiray, Seyma Tuluce .
WAVES IN RANDOM AND COMPLEX MEDIA, 2014, 24 (04) :439-451
[10]  
Bulut Hasan, 2013, ABSTR APPL AN, V2013