What does it take to solve the measurement problem?

被引:11
作者
Hance, Jonte R. [1 ]
Hossenfelder, Sabine [2 ]
机构
[1] Univ Bristol, Quantum Engn Technol Labs, Dept Elect & Elect Engn, Woodland Rd, Bristol BS8 1US, Avon, England
[2] Frankfurt Inst Adv Studies, Ruth Moufang Str 1, D-60438 Frankfurt, Germany
来源
JOURNAL OF PHYSICS COMMUNICATIONS | 2022年 / 6卷 / 10期
基金
英国工程与自然科学研究理事会;
关键词
quantum foundations; measurement problem; quantum gravity; quantum mechanics; statistical independence; SIGNAL-LOCALITY; SUGGESTED INTERPRETATION; QUANTUM-THEORY; EINSTEIN; STOCHASTICITY; EINSELECTION; DECOHERENCE; NONLOCALITY; UNCERTAINTY; TERMS;
D O I
10.1088/2399-6528/ac96cf
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We summarise different aspects of the measurement problem in quantum mechanics. We argue that it is a real problem which requires a solution, and identify the properties a theory needs to solve the problem. We show that no current interpretation of quantum mechanics solves the problem, and that, being interpretations rather than extensions of quantum mechanics, they cannot solve it. Finally, we speculate what a solution of the measurement problem might be good for.
引用
收藏
页数:12
相关论文
共 86 条
[1]  
Fuchs CA, 2010, Arxiv, DOI arXiv:1003.5209
[2]  
Adlam E., 2022, arXiv
[3]   EXPERIMENTAL REALIZATION OF EINSTEIN-PODOLSKY-ROSEN-BOHM GEDANKENEXPERIMENT - A NEW VIOLATION OF BELL INEQUALITIES [J].
ASPECT, A ;
GRANGIER, P ;
ROGER, G .
PHYSICAL REVIEW LETTERS, 1982, 49 (02) :91-94
[4]   STATISTICAL INTERPRETATION OF QUANTUM MECHANICS [J].
BALLENTI.LE .
REVIEWS OF MODERN PHYSICS, 1970, 42 (04) :358-&
[5]  
Bambusi D, 1999, ASYMPTOTIC ANAL, V21, P149
[6]   Dynamical reduction models [J].
Bassi, A ;
Ghirardi, GC .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 379 (5-6) :257-426
[7]  
Bell JS., 2004, NOUVELLE CUISINE, V2, P232
[8]   CONDITION OF STOCHASTICITY IN QUANTUM NON-LINEAR SYSTEMS [J].
BERMAN, GP ;
ZASLAVSKY, GM .
PHYSICA A, 1978, 91 (3-4) :450-460
[9]  
Berry M., 2001, Quantum mechanics: Scientfic perpectives on Divine Action, P41
[10]  
BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166