Diffusion approximation for linear transport with multiplying boundary conditions

被引:1
作者
Protopopescu, V [1 ]
Thevenot, L
机构
[1] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA
[2] Chalmers Univ Technol, Dept Math, S-41296 Gothenburg, Sweden
关键词
diffusion approximation; transport equation; multiplying boundary condition; boundary layer; Milne problem; asymptotic expansion; spectral theory;
D O I
10.1137/S0036139903424242
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the diffusion limit of a suitably rescaled model transport equation in a slab with multiplying boundary conditions, as the scaling parameter e tends to zero. We show that, for sufficiently smooth data, the solution converges in the L-2-norm for each t > 0 to the solution of a diffusion equation with Robin boundary conditions corresponding to an incoming flux. The derivation of the diffusive limit is based on an asymptotic expansion, which is rigorously justified.
引用
收藏
页码:1657 / 1676
页数:20
相关论文
共 30 条
  • [1] BANASIAK J, 1995, ADV MATH APPL SCI, V34
  • [2] DIFFUSION-APPROXIMATION AND COMPUTATION OF THE CRITICAL SIZE
    BARDOS, C
    SANTOS, R
    SENTIS, R
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (02) : 617 - 649
  • [3] ABSTRACT TIME-DEPENDENT TRANSPORT-EQUATIONS
    BEALS, R
    PROTOPOPESCU, V
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 121 (02) : 370 - 405
  • [4] Bensoussan Alain, 1979, Publ. Res. Inst. Math. Sci., V15, P53, DOI DOI 10.2977/PRIMS/1195188427.MR533346
  • [5] 3D-Streaming operator with multiplying boundary conditions: Semigroup generation properties
    Borgioli, G
    Totaro, S
    [J]. SEMIGROUP FORUM, 1997, 55 (01) : 110 - 117
  • [6] A Rotenberg's model with perfect memory rule
    Boulanouar, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (12): : 965 - 968
  • [7] The neutron transport with general boundary conditions
    Boulanouar, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (02): : 121 - 124
  • [8] Streaming operator.: 1.: Existence of a C0-semigroup
    Boulanouar, M
    [J]. TRANSPORT THEORY AND STATISTICAL PHYSICS, 2002, 31 (02): : 169 - 176
  • [9] Boulanouar M., 2000, DIFFERENTIAL INTEGRA, V13, P125
  • [10] Dautray R., 1988, MATH ANAL NUMERICAL, V2