A fully hardware-based memristive multilayer neural network

被引:50
作者
Kiani, Fatemeh [1 ]
Yin, Jun [1 ,2 ]
Wang, Zhongrui [1 ,3 ]
Yang, J. Joshua [1 ,2 ]
Xia, Qiangfei [1 ]
机构
[1] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA
[2] Univ Southern Calif, Dept Elect & Comp Engn, Los Angeles, CA 90007 USA
[3] Univ Hong Kong, Dept Elect & Elect Engn, Pokfulam Rd, Hong Kong, Peoples R China
关键词
COMPUTING-IN-MEMORY; SIGNAL; MACRO;
D O I
10.1126/sciadv.abj4801
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Memristive crossbar arrays promise substantial improvements in computing throughput and power efficiency through in-memory analog computing. Previous machine learning demonstrations with memristive arrays, however, relied on software or digital processors to implement some critical functionalities, leading to frequent analog/digital conversions and more complicated hardware that compromises the energy efficiency and computing parallelism. Here, we show that, by implementing the activation function of a neural network in analog hardware, analog signals can be transmitted to the next layer without unnecessary digital conversion, communication, and processing. We have designed and built compact rectified linear units, with which we constructed a two-layer perceptron using memristive crossbar arrays, and demonstrated a recognition accuracy of 93.63% for the Modified National Institute of Standard and Technology (MNIST) handwritten digits dataset. The fully hardware-based neural network reduces both the data shuttling and conversion, capable of delivering much higher computing throughput and power efficiency.
引用
收藏
页数:8
相关论文
共 60 条
  • [1] Analog Devices Inc., 2014, PUBLICATION, V62689f
  • [2] Barten A.P., 1987, The Practice of Econometrics, P181, DOI [DOI 10.1007/978-94-009-3591-4_12, 10.1007/978-94-009-3591-4_12]
  • [3] Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits
    Bayat, F. Merrikh
    Prezioso, M.
    Chakrabarti, B.
    Nili, H.
    Kataeva, I.
    Strukov, D.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [4] Roadmap on emerging hardware and technology for machine learning
    Berggren, Karl
    Xia, Qiangfei
    Likharev, Konstantin K.
    Strukov, Dmitri B.
    Jiang, Hao
    Mikolajick, Thomas
    Querlioz, Damien
    Salinga, Martin
    Erickson, John R.
    Pi, Shuang
    Xiong, Feng
    Lin, Peng
    Li, Can
    Chen, Yu
    Xiong, Shisheng
    Hoskins, Brian D.
    Daniels, Matthew W.
    Madhavan, Advait
    Liddle, James A.
    McClelland, Jabez J.
    Yang, Yuchao
    Rupp, Jennifer
    Nonnenmann, Stephen S.
    Cheng, Kwang-Ting
    Gong, Nanbo
    Lastras-Montano, Miguel Angel
    Talin, A. Alec
    Salleo, Alberto
    Shastri, Bhavin J.
    de Lima, Thomas Ferreira
    Prucnal, Paul
    Tait, Alexander N.
    Shen, Yichen
    Meng, Huaiyu
    Roques-Carmes, Charles
    Cheng, Zengguang
    Bhaskaran, Harish
    Jariwala, Deep
    Wang, Han
    Shainline, Jeffrey M.
    Segall, Kenneth
    Yang, J. Joshua
    Roy, Kaushik
    Datta, Suman
    Raychowdhury, Arijit
    [J]. NANOTECHNOLOGY, 2021, 32 (01)
  • [5] An 8-GS/s 200-MHz Bandwidth 68-mW ΔΣ DAC in 65-nm CMOS
    Bhide, Ameya
    Najari, Omid Esmailzadeh
    Mesgarzadeh, Behzad
    Alvandpour, Atila
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2013, 60 (07) : 387 - 391
  • [6] A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations
    Cai, Fuxi
    Correll, Justin M.
    Lee, Seung Hwan
    Lim, Yong
    Bothra, Vishishtha
    Zhang, Zhengya
    Flynn, Michael P.
    Lu, Wei D.
    [J]. NATURE ELECTRONICS, 2019, 2 (07) : 290 - 299
  • [7] CMOS-integrated memristive non-volatile computing-in-memory for AI edge processors
    Chen, Wei-Hao
    Dou, Chunmeng
    Li, Kai-Xiang
    Lin, Wei-Yu
    Li, Pin-Yi
    Huang, Jian-Hao
    Wang, Jing-Hong
    Wei, Wei-Chen
    Xue, Cheng-Xin
    Chiu, Yen-Cheng
    King, Ya-Chin
    Lin, Chorng-Jung
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Yang, J. Joshua
    Ho, Mon-Shu
    Chang, Meng-Fan
    [J]. NATURE ELECTRONICS, 2019, 2 (09) : 420 - 428
  • [8] A 4-Kb 1-to-8-bit Configurable 6T SRAM-Based Computation-in-Memory Unit-Macro for CNN-Based AI Edge Processors
    Chiu, Yen-Cheng
    Zhang, Zhixiao
    Chen, Jia-Jing
    Si, Xin
    Liu, Ruhui
    Tu, Yung-Ning
    Su, Jian-Wei
    Huang, Wei-Hsing
    Wang, Jing-Hong
    Wei, Wei-Chen
    Hung, Je-Min
    Sheu, Shyh-Shyuan
    Li, Sih-Han
    Wu, Chih-I
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Chang, Meng-Fan
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2020, 55 (10) : 2790 - 2801
  • [9] Cui JW, 2016, IEEE INT SYMP CIRC S, P121, DOI 10.1109/ISCAS.2016.7527185
  • [10] Draper N.R., 1998, Applied Regression Analysis, V3rd ed.