Mental fatigue detection using a wearable commodity device and machine learning

被引:19
|
作者
Goumopoulos, Christos [1 ]
Potha, Nektaria [1 ]
机构
[1] Univ Aegean, Dept Informat & Commun Syst Engn, Samos, Greece
关键词
Mental fatigue; Wearable devices; Heart rate variability; Machine learning; Experimental study; HEART-RATE-VARIABILITY; ELECTROENCEPHALOGRAM; PERFORMANCE; STRESS; STATE;
D O I
10.1007/s12652-021-03674-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mental fatigue is a psychophysiological state that has an intense adverse effect on the quality of life, undermining both the mental and the physical health. As a consequence, detecting this state accurately can be beneficial to delivering prevention and treatment mechanisms. In parallel, advancements in wearable device technologies have reached a maturity level that can support continuous and long-term monitoring of physiological signals accurately and unobtrusively in everyday life. In this paper, a mental fatigue detection methodology is proposed, founded on the use of a wearable consumer device to enable heart rate variability (HRV) analysis and suitable machine learning models to predict the stress state with high accuracy. Even though a lot of studies have attempted to address the same problem in the past by using multiple signals, these approaches are invasive because they require a lot of sensor devices to be attached to the users. The main contributions of this work are three folds: An experimental study with 32 healthy participants demonstrating that mental fatigue caused by cognitive overload can be detected using a wearable commodity device and a single biomarker; Detection models based on eight HRV features which were found to have significant differences after inducing mental fatigue; A methodology, which includes a support vector machine, among other classifiers, and principal component analysis capable to predict cognitive performance degradation in the form of mental fatigue with a high accuracy which can be further improved by applying an ensemble model. The ability to detect mental fatigue unobtrusively and on a regular basis, for example, in workplace environments, could provide awareness on the causes of performance variations which subsequently can navigate improvements on working practices and task planning to prevent accidents or productivity losses.
引用
收藏
页码:10103 / 10121
页数:19
相关论文
共 50 条
  • [1] Mental fatigue detection using a wearable commodity device and machine learning
    Christos Goumopoulos
    Nektaria Potha
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 10103 - 10121
  • [2] Workout Detection by Wearable Device Data Using Machine Learning
    Yoshida, Yutaka
    Yuda, Emi
    APPLIED SCIENCES-BASEL, 2023, 13 (07):
  • [3] Automatic Cognitive Fatigue Detection Using Wearable fNIRS and Machine Learning
    Varandas, Rui
    Lima, Rodrigo
    Badia, Sergi Bermudez, I
    Silva, Hugo
    Gamboa, Hugo
    SENSORS, 2022, 22 (11)
  • [4] Heart Arrhythmia Detection & Monitoring Using Machine Learning & ECG Wearable Device
    Afadar, Yaman
    Akram, Amna
    Alkeebali, Asmaa
    Majzoub, Sohaib
    2020 SEVENTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY TRENDS (ITT 2020), 2020, : 107 - 112
  • [5] A Review on Mental Stress Detection Using Wearable Sensors and Machine Learning Techniques
    Gedam, Shruti
    Paul, Sanchita
    IEEE ACCESS, 2021, 9 : 84045 - 84066
  • [6] Wearable Device Localisation Using Machine Learning Techniques
    de Arruda, Damian
    Hancke, Gerhard P.
    PROCEEDINGS 2016 IEEE 25TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2016, : 1110 - 1115
  • [7] Combining wearable device with machine learning for intelligent health detection
    Hao, Yunhui
    INTERNET TECHNOLOGY LETTERS, 2025, 8 (01)
  • [8] Combining wearable device with machine learning for intelligent health detection
    Hao, Yunhui
    INTERNET TECHNOLOGY LETTERS, 2025, 8 (01)
  • [9] AUTOMATIC NIGHTTIME AGITATION AND SLEEP DISRUPTION DETECTION USING A WEARABLE ANKLE DEVICE AND MACHINE LEARNING
    Kumar, R.
    Feltch, C.
    Richards, K.
    Morrison, J.
    Rangel, A.
    Janney, R.
    Shayesteh, S.
    Allen, R.
    Banerjee, N.
    SLEEP, 2020, 43 : A168 - A168
  • [10] Machine learning-assisted flexible wearable device for tyrosine detection
    Bao, Qiwen
    Li, Gang
    Cheng, Wenbo
    Yang, Zhengchun
    Qu, Zilian
    Wei, Jun
    Lin, Ling
    RSC ADVANCES, 2023, 13 (34) : 23788 - 23795