Identification of damage parameters for discontinuous rock mass

被引:1
作者
Ohkami, T. [1 ]
Maruden, K. [2 ]
Koyama, S. [1 ]
机构
[1] Shinshu Univ, Dept Civil Engn, Nagano 3808553, Japan
[2] Nara City Off, Waterworks Bur, Nara 6308580, Japan
关键词
parameter identification; wavelet transform; damage tensor; finite element analysis; back analysis; ill-posed problems; FAST WAVELET TRANSFORMS; BEM; FEM;
D O I
10.1002/cnm.1358
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents an identification method for a discontinuous rock mass employing damage mechanics theory and wavelet analysis. Parameter identification methods based on deterministic approaches are classified into inverse and direct approaches. The proposed method combines the inverse approach and the direct approach and by applying the discrete wavelet transform to the system matrix of the iteration equation, we estimate unknown damage tensors for the case in which the number of unknown parameters exceeds the observed data. The validity of this method is examined for geotechnical engineering problems. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:1280 / 1295
页数:16
相关论文
共 21 条
[1]  
[Anonymous], 1992, Soils Found.
[2]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[3]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[4]   Wavelet solution of the inverse parameter problems [J].
Doi, T ;
Hayano, S ;
Saito, Y .
IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (02) :1962-1965
[5]   Wavelet solution of the inverse source problems [J].
Doi, T ;
Hayano, S ;
Saito, Y .
IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (02) :1935-1938
[6]   An application of the wavelets to the magnetic field source searching [J].
Doi, T ;
Yoshida, S ;
Nakaya, Y ;
Hayano, S ;
Saito, Y .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (08) :4699-4701
[7]   Inverse analysis procedure for identifying hardening function in elasto-plastic problem by two-stage finite element scheme [J].
Dziadziuszko, P ;
Ichikawa, Y ;
Sikora, Z .
INVERSE PROBLEMS IN ENGINEERING, 2000, 8 (04) :391-411
[8]   Parallel iterative solvers involving fast wavelet transforms for the solution of BEM systems [J].
González, P ;
Cabaleiro, JC ;
Pena, TF .
ADVANCES IN ENGINEERING SOFTWARE, 2002, 33 (7-10) :417-426
[9]   Biorthogonal wavelet approximation for the coupling of FEM-BEM [J].
Harbrecht, H ;
Paiva, F ;
Pérez, C ;
Schneider, R .
NUMERISCHE MATHEMATIK, 2002, 92 (02) :325-356
[10]   Wavelets strategy for ill posed linear systems [J].
Ishida, N ;
Oguchi, Y ;
Saito, Y .
INVERSE PROBLEMS IN ENGINEERING MECHANICS, 1998, :345-351