Plant growth-promoting endophyte Piriformospora indica alleviates salinity stress in Medicago truncatula

被引:76
|
作者
Li, Liang [1 ]
Li, Lei [1 ]
Wang, Xiaoyang [1 ]
Zhu, Pengyue [1 ]
Wu, Hongqing [1 ]
Qi, Shuting [1 ]
机构
[1] Hebei Univ Technol, Sch Marine Sci & Engn, 8 Guangrongdao, Tianjin 300130, Peoples R China
关键词
Piriformospora indica; Medicago truncatula; Defense-related; Salt-tolerance; Antioxidant enzyme; ARABIDOPSIS ROOTS; OXIDATIVE STRESS; WATER-STRESS; FUNGUS; TOLERANCE; EXPRESSION; PROTEIN; RESPONSES; PROLINE; IDENTIFICATION;
D O I
10.1016/j.plaphy.2017.08.029
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Piriformospora indica, a cultivable root endophytic fungus, induces growth promotion as well as biotic stress resistance and tolerance to abiotic stress in a broad range of host plants. In this study, the potential protection for M Medicago truncatula plants from salinity stress by P. indica was explored. The improved plant growth under severe saline condition was exhibited in P. indica-colonized lines. Moreover, the antioxidant enzymes activities and hyphae density in roots were increased by the endophyte under high salt concentration. Conversely, reduced malondialdehyde (MDA) activity, Na+ content and relative electrolyte conductivity (REC) were observed in P. indica colonized plants. Especially, osmoprotectant proline accumulated and the expression of Delta 1-Pyrroline-5-carboxylate synthetase gene (P5CS2) was induced. The defense related genes PR1 and PR10 and the transcription factors MtAlfin1-like and C2H2-type zinc finger protein MtZfp-c2h2 were induced by P. indica colonization as well. Further work indicated that salinity resistance was increased in overexpressing P5CS2, MtAlfin1-like and MtZfp-c2h2 transgenic M. truncatula plants. Interestingly, our data showed that the transcription factors MtAlfin1-like and MtZfp-c2h2 were positively contributed to P. indica colonization. These results demonstrate that tolerance to salinity stress was conferred by P. indica in M. truncatula via accumulation of osmoprotectant, stimulating antioxidant enzymes and the expression of defense-related genes. This work revealed the potential application of P. indica's as a plant growth-promoting fungus for the target improvement either in crop protection or in the salinized soil improvement indirectly. (C) 2017 Published by Elsevier Masson SAS.
引用
收藏
页码:211 / 223
页数:13
相关论文
共 50 条
  • [11] Plant Growth-Promoting Rhizobacteria Ameliorates Salinity Stress in Pea (Pisum sativum)
    Swapnil Sapre
    Iti Gontia-Mishra
    Sharad Tiwari
    Journal of Plant Growth Regulation, 2022, 41 : 647 - 656
  • [12] Plant Growth-Promoting Bacteria: Biological Tools for the Mitigation of Salinity Stress in Plants
    Kumar, Akhilesh
    Singh, Saurabh
    Gaurav, Anand Kumar
    Srivastava, Sudhakar
    Verma, Jay Prakash
    FRONTIERS IN MICROBIOLOGY, 2020, 11
  • [13] Plant Growth-Promoting Rhizobacteria Ameliorates Salinity Stress in Pea (Pisum sativum)
    Sapre, Swapnil
    Gontia-Mishra, Iti
    Tiwari, Sharad
    JOURNAL OF PLANT GROWTH REGULATION, 2022, 41 (02) : 647 - 656
  • [14] Halotolerant plant growth-promoting bacteria: Prospects for alleviating salinity stress in plants
    Etesami, Hassan
    Glick, Bernard R.
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2020, 178
  • [15] Effect of plant growth-promoting rhizobacteria on alleviating salinity stress in plants: a review
    Kumar, Ashok
    Behera, Itishree
    Langthasa, Mrinalini
    PrakashNaroju, Sai
    JOURNAL OF PLANT NUTRITION, 2023, 46 (10) : 2525 - 2550
  • [16] Enhancing growth and salinity stress tolerance of date palm using Piriformospora indica
    Sabeem, Miloofer
    Aziz, Mughair Abdul
    Mullath, Sangeeta K.
    Brini, Faical
    Rouached, Hatem
    Masmoudi, Khaled
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [17] Research Progress of Piriformospora indica in Improving Plant Growth and Stress Resistance to Plant
    Li, Liang
    Feng, Yu
    Qi, Fuyan
    Hao, Ruiying
    JOURNAL OF FUNGI, 2023, 9 (10)
  • [18] Isolation and characterization of plant growth-promoting rhizobacteria and their effects on the growth of Medicago sativa L. under salinity conditions
    Zhiyu Zhu
    Huanhuan Zhang
    Jing Leng
    Huanqing Niu
    Xiaochun Chen
    Dong Liu
    Yong Chen
    Nan Gao
    Hanjie Ying
    Antonie van Leeuwenhoek, 2020, 113 : 1263 - 1278
  • [19] Salinity Stress: Toward Sustainable Plant Strategies and Using Plant Growth-Promoting Rhizobacteria Encapsulation for Reducing It
    Riseh, Roohallah Saberi
    Ebrahimi-Zarandi, Marzieh
    Tamanadar, Elahe
    Pour, Mojde Moradi
    Thakur, Vijay Kumar
    SUSTAINABILITY, 2021, 13 (22)
  • [20] Piriformospora indica Alleviates Salinity by Boosting Redox Poise and Antioxidative Potential of Tomato
    A. Ghorbani
    S. M. Razavi
    V. O. G. Omran
    H. Pirdashti
    Russian Journal of Plant Physiology, 2018, 65 : 898 - 907