Locally conformal calibrated G2-manifolds

被引:0
作者
Fernandez, Marisa [1 ]
Fino, Anna [2 ]
Raffero, Alberto [2 ]
机构
[1] Univ Basque Country, Fac Ciencias & Tecnol, Dept Matemat, Apartado 644, E-48080 Bilbao, Spain
[2] Univ Turin, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
关键词
Locally conformal calibrated G(2)-structure; SU(3)-structure; Mapping torus; HALF-FLAT STRUCTURES; METRICS; COMPLEX;
D O I
10.1007/s10231-015-0544-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study conditions for which the mapping torus of a 6-manifold endowed with an SU(3)-structure is a locally conformal calibrated G(2)-manifold, that is, a 7-manifold endowed with a G(2)-structure phi such that d(phi) = -theta Lambda phi for a closed nonvanishing 1-form theta. Moreover, we showthat if (M, phi) is a compact locally conformal calibratedG(2)-manifold with L-theta#phi = 0, where theta(#) is the dual of theta with respect to the Riemannian metric g(phi) induced by phi, then M is a fiber bundle over S-1 with a coupled SU(3)-manifold as fiber.
引用
收藏
页码:1721 / 1736
页数:16
相关论文
共 21 条
[1]  
[Anonymous], 2005, Proc. G okova Geom. Topol. Conf
[2]  
Bande G, 2011, CONTEMP MATH, V542, P85
[3]  
Bazzoni G, 2015, T AM MATH SOC, V367, P4459
[4]  
Bock C., ARXIV09032926
[5]   METRICS WITH EXCEPTIONAL HOLONOMY [J].
BRYANT, RL .
ANNALS OF MATHEMATICS, 1987, 126 (03) :525-576
[6]   Half-flat structures and special holonomy [J].
Cortes, V. ;
Leistner, T. ;
Schaefer, L. ;
Schulte-Hengesbach, F. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2011, 102 :113-158
[7]   A differential complex for locally conformal calibrated G2-manifolds [J].
Fernández, M ;
Ugarte, L .
ILLINOIS JOURNAL OF MATHEMATICS, 2000, 44 (02) :363-390
[8]   RIEMANNIAN-MANIFOLDS WITH STRUCTURE-GROUP G2 [J].
FERNANDEZ, M ;
GRAY, A .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1982, 132 :19-45
[9]  
Fino A, 2015, MATH Z, V280, P1093, DOI 10.1007/s00209-015-1468-x
[10]   Killing spinor equations in dimension 7 and geometry of integrable G2-manifolds [J].
Friedrich, T ;
Ivanov, S .
JOURNAL OF GEOMETRY AND PHYSICS, 2003, 48 (01) :1-11