Complex multiple interactions between cells and extracellular matrix occur during acinar morphogenesis involving integrin receptors and growth factors, Changes in these interactions occur during carcinogenesis as cells progress from a normal to a malignant, invasive phenotype. We have developed human prostatic epithelial cell lines of the same lineage, which represent multiple steps in carcinogenesis, similar to prostatic intraepithelial neoplasia and subsequent tumor progression. The non-tumorigenic, RWPE-1 and the tumorigenic WPE1-NB27 and WPE1-NB26 cell lines were used to examine their ability to undergo acinar morphogenesis in a 3-D cell culture model and its relationship to invasion, integrin expression and EGF presence. An inverse relationship between the degree of acinar formation and invasive ability was observed. The non-tumorigenic, non-invasive RWPE-1 and the low tumorigenic, low invasive, WPE1-NB27 cells show high and decreased acinar forming ability, respectively, while the more invasive WPE1-NB26 cells show a loss of acinar formation. While RWPE-1 acini show basal expression of alpha6 beta1 integrin, which correlates with their ability to polarize and form acini, WPE1-NB27 cells lack alpha6 but show basal, but weaker expression of beta1 integrin. beta1 WPE1-NB26 cells show loss alpha6 and abnormal, diffused beta1 integrin expression. A dose-dependent decrease in acinar formation was observed in RWPE-1 cells when cell proliferation was induced by EGF. Anti-functional antibody to EGF caused an increase in acinar formation in RWPE-1 cells. These results suggest that malignant cells lose the ability to undergo acinar morphogenesis and that the degree of this loss appears to be related to invasive ability, EGF levels and alterations in laminin-specific integrin expression. This model system mimics different steps in prostate carcinogenesis and has applications in the secondary and tertiary prevention of prostate cancer. (C) 2001 Elsevier Science B.V. All rights reserved.